A Distributed Architecture for Privacy-Preserving Optimization Using Genetic Algorithms and Multi-Party Computation

Appendix

Christoph G. Schuetz¹[0000-0002-0955-8647], Thomas Lorünser²[0000-0002-1829-4882], Samuel Jaburek¹, Kevin Schuetz¹, Florian Wohner², Roman Karl², and Eduard Gringinger³[0000-0003-3897-3003]

Institute of Business Informatics - Data & Knowledge Engineering, Johannes Kepler University Linz, Linz, Austria {schuetz, jaburek, kschuetz}@dke.uni-linz.ac.at http://www.dke.jku.at/
AIT Austrian Institute of Technology, Vienna, Austria {Thomas.Loruenser, Florian.Wohner, Roman.Karl}@ait.ac.at https://www.ait.ac.at/
Frequentis AG, Vienna, Austria

eduard.gringinger@frequentis.com
https://www.frequentis.com/

Table of Contents

	asets	
	erimental Results	
2.1	Methods	5
2.2	Run 1	6
2.3	Run 2 85	5
2.4	Run 3 164	4
2.5	Run 4 25	7

1 Datasets

Table 1 shows the characteristics of the synthetic datasets that we refer to as Cases 1-27.

Table 1. Characteristics of the scenarios used in experiments as Cases 1–27

Case	Concentration	Priorities	Margins	Flights
1	Even	Middle	Broad	100
2	Extreme	Middle	Broad	100
3	Moderate	Middle	Broad	100
4	Even	Fringes	Broad	100
5	Extreme	Fringes	Broad	100
6	Moderate	Fringes	Broad	100
7	Even	Even	Broad	100
8	Extreme	Even	Broad	100
9	Moderate	Even	Broad	100
10	Even	Middle	Normal	100
11	Extreme	Middle	Normal	100
12	Moderate	Middle	Normal	100
13	Even	Fringes	Normal	100
14	Extreme	Fringes	Normal	100
15	Moderate	Fringes	Normal	100
16	Even	Even	Normal	100
17	Extreme	Even	Normal	100
18	Moderate	Even	Normal	100
19	Even	Middle	Narrow	100
20	Extreme	Middle	Narrow	100
21	Moderate	Middle	Narrow	100
${\bf 22}$	Even	Fringes	Narrow	100
23	Extreme	Fringes	Narrow	100
$\bf 24$	Moderate	Fringes	Narrow	100
25	Even	Even	Narrow	100
26	Extreme	Even	Narrow	100
27	Moderate	Even	Narrow	100

Figure 1 illustrates the differences between the different concentrations by showing the number of flights wishing a certain slot on the timeline.

Table 2 shows the characteristics of the synthetic datasets that we refer to as Cases 28-47.

4 C. G. Schuetz et al.

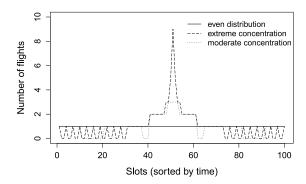


Fig. 1. Different scenarios of concentration of the flights' wished times

Table 2. Distribution of margin widths (a, b) and concentration of wished times (c) for the random generation of synthetic datasets for Cases 28-47 in our experiments. Concerning the distribution of margin widths, the absolute (f) and relative (p) probabilities are indicated per bin of margin widths delimited by a min and max width. Concerning the concentration of wished times, the absolute (f) and relative (p) probabilities that a time is wished by n flights are indicated.

min	max	f	p	min	max	f	p	n	\mathbf{f}	p
0	10	8	0.0304	191	200	1	0.0038	1	131	0.736
11	20	25	0.0951	201	210	4	0.0152	2	23	0.129
21	30	30	0.1141	241	250	1	0.0038	3	14	0.079
31	40	22	0.0837	251	260	2	0.0076	4	7	0.039
41	50	23	0.0875	261	270	3	0.0114	5	2	0.011
51	60	20	0.0760	321	330	5	0.0190	6	1	0.006
61	70	19	0.0722	331	340	2	0.0076			
71	80	6	0.0228	371	380	2	0.0076		(c)	
81	90	9	0.0342	381	390	3	0.0114		(0)	
91	100	5	0.0190	391	400	2	0.0076			
101	110	6	0.0228	441	450	3	0.0114			
111	120	1	0.0038	461	470	1	0.0038			
121	130	2	0.0076	471	480	1	0.0038			
131	140	2	0.0076	501	510	3	0.0114			
141	150	6	0.0228	551	560	3	0.0114			
161	170	4	0.0152	611	620	3	0.0114			
171	180	1	0.0038	671	680	3	0.0114			
181	190	3	0.0114	701	1420	29	0.1103			
	(`			(1					

(a) (b)

2 Experimental Results

This section presents the analysis of the results from different experimental runs that have been executed as part of this paper. Tables show the relative fitness achieved by different configurations with regards to the optimum for our test cases, the generations in which certain thresholds have been surpassed, and the average durations of the optimizations. The measured duration is from the time the optimization starts to the time the optimization ends, including running the Hungarian algorithm and other tasks for collecting statistical data for the experiments. We did not optimize for run time performance. The durations should therefore not be interpreted in isolation but only hint at the actual run time. Furthermore, run times will likely depend on many things. A more accurate measurement of the duration or complexity of the optimization run is the number of generations needed to achieve a certain fitness. Figures will show the evolution of the fitness of the current generation, of the fitness of the optimizations.

We refer to the following website for the sources and documentation: https://jku-win-dke.github.io/SlotMachine-Optimizer/

The datasets and full experimental results are also available for download:

```
http://final.at/coopis2022/run1.zip
http://final.at/coopis2022/run2.zip
http://final.at/coopis2022/run3.zip
http://final.at/coopis2022/run4.zip
```

2.1 Methods

This section explains the identifiers we use to refer to the different obfuscation methods and configurations employed in our experiments. The identifiers on top of the following tables refer to the fitness methods that have been laid out in the paper, the fitness estimator that has been used, and the chosen parameter. Details for the different options are given in the main paper.

ORDER refers to the fitness method order. A fitness estimator has to be chosen for this method; e.g., $ORDER_LIN$ indicates that these optimizations have been configured to use the fitness method order in conjunction with a linear fitness estimator. Likewise, the prefixes OQ_LIN and FR_LIN identify the fitness methods order quantiles and fitness range, respectively. For these methods, the number of buckets is specified by the identifier; e.g., OQ_LIN_10 identifies a configuration composed of the order quantiles method along with a linear fitness estimator, where the individuals of each population are assigned to 10 quantiles. The fitness methods top individuals and above threshold, identified by ABOVE and TOP respectively, do not require a fitness estimator. $ABOVE_70$ would refer to a configuration that uses a threshold of 70%; in this case, all individuals whose fitness surpasses 70% of the best solutions' fitness in a given population,

are known to the GA. TOP_30 on the other hand uses the fitness method top individuals, with the top 30% of the population being disclosed to the GA.

The following sections provides details regarding the experimental runs, the analysis of the collected experimental data, and the configurations.

2.2 Run 1

The first experimental run consisted of the cases 1-27⁴. The GA has been configured to terminate when either 500 generations have been evaluated, or the optimum fitness (as determined by the *Hungarian* algorithm at the beginning of each optimization) has been reached. Deduplication has been activated with the maximum retries⁵ set to 10. The fitness of the best solution in each generation has been disclosed to the GA, to determine if it represents an improvement to the current best solution and to estimate fitness values for each individual.

⁴ A description of the test cases can be found in the paper.

⁵ Determines how often the GA attempts to remove duplicates from a generation before it accepts duplicates for said generation.

 ${\bf Table~3.~Reached~percentages~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

	ABOVE_70										
	fitness value										
case #	pop	ulation	500	pop	ulation	100					
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	97.53%	97.51%	97.54%	97.42%	97.37%	97.47%					
3	99.30%	99.29%	99.31%	99.30%	99.29%	99.32%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	94.59%	94.52%	94.64%	94.27%	94.22%	94.33%					
6	96.19%	96.09%	96.25%	96.25%	96.13%	96.40%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	94.63%	94.55%	94.70%	94.54%	94.52%	94.60%					
9	97.45%	97.41%	97.48%	97.39%	97.37%	97.42%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	70.23%	69.90%	70.48%	69.78%	69.29%	69.99%					
12	99.11%	99.11%	99.11%	99.10%	99.10%	99.11%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	66.80%	65.51%	67.34%	62.20%	58.76%	64.49%					
15	96.91%	96.90%	96.91%	96.90%	96.88%	96.95%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	62.46%	60.54%	65.40%	60.60%	59.60%	61.68%					
18	96.26%	96.23%	96.30%	96.21%	96.19%	96.26%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	55.14%	52.25%	60.53%	47.06%	44.48%	49.40%					
21	55.49%	53.19%	56.82%	45.75%	43.18%	48.89%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	62.11%	59.98%	64.81%	57.48%	53.89%	64.00%					
24	57.09%	54.37%	62.24%	49.99%	47.98%	52.14%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	61.76%	59.00%	63.96%	53.94%	52.28%	56.55%					
27	55.41%	54.91%	55.78%	47.96%	45.29%	49.55%					

Table 4. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ABOVE_70												
				_	tion					pula			
case #	$\overline{ 7}$	5%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	L	1	1	1	1	1	1	1	1	1	1	1	1
2	2	1	1	1	1	1	-	1	1	1	1	1	-
:	3	1	1	1	1	1	-	1	1	1	1	1	-
4	Į.	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
6	3	1	1	1	1	1	-	1	1	1	1	1	-
7	7	1	1	1	1	1	1	1	1	1	1	1	1
8	3	1	1	1	1	-	-	1	1	1	1	-	-
()	1	1	1	1	1	-	1	1	1	1	1	-
10)	1	1	1	1	1	1	1	1	1	1	1	1
11			-	-	-	-	-	-	-	-	-	-	-
12		1	1	1	1	1	-	1	1	1	1	1	-
13		1	1	1	1	1	1	1	1	1	1	1	1
14	- 1		-	-	-	-	-	-	-	-	-	-	-
15		1	1	1	1		-	1	1	1	1	1	-
16		1	1	1	1	1	1	1	1	1	1	1	1
17			-	-	-	-	-	-	-	-	-	-	-
18		1	1	1	1		-	1	1	1	1	1	
19		1	1	1	1	1	1	1	1	1	1	1	1
20	- 1		-	-	-	-	-	-	-	-	-	-	-
21		-	-	-	-	-	-	-	-	-	-	-	-
22		1	1	1	1	1	1	1	1	1	1	1	1
23			-	-	-	-	-	-	-	-	-	-	-
24		- 1	-	-	-	-	-	-	-	-	-	-	-
25		1	1	1	1	1	1	1	1	1	1	1	1
26			-	-	-	-	-	-	-	-	-	-	-
27	7 -		-	-	-	-	-	-	-	-	-	-	-

 ${\bf Table~5.}~{\bf Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.$

	ABOVE_	70
		pop. 100
case #	avg. time	avg. time
1	2.93	0.18
2	49.36	8.95
3	49.23	8.86
4	2.98	0.19
2 3 4 5	49.32	8.94
	49.65	8.94
6 7	2.95	0.19
8	49.63	8.99
9	49.29	8.96
10	2.99	0.19
11	50.42	9.09
12	51.09	9.17
13	3.12	0.20
14	54.92	9.33
15	51.66	9.05
16	2.99	0.19
17	49.66	8.92
18	48.75	8.79
19	2.99	0.19
20	47.09	9.00
21	54.78	8.93
22	3.00	0.19
23	47.02	9.00
24	59.59	9.15
25	2.96	0.19
26	46.75	8.94
27	57.25	9.02

 ${\bf Table~6.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ABOVE_80											
	fitness value											
case #	pop	ulation	500	pop	ulation	100						
"	avg	min	max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.52%	97.51%	97.56%	97.40%	97.37%	97.43%						
3	99.30%	99.30%	99.30%	99.29%	99.29%	99.29%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.64%	94.52%	94.77%	94.25%	94.20%	94.33%						
6	96.24%	96.20%	96.29%	96.12%	96.08%	96.22%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.71%	94.64%	94.86%	94.60%	94.52%	94.84%						
9	97.45%	97.39%	97.50%	97.39%	97.37%	97.45%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	75.74%	73.95%	76.51%	70.14%	69.95%	70.34%						
12	99.11%	99.11%	99.12%	99.10%	99.10%	99.11%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	77.51%	75.56%	79.58%	73.24%	70.30%	75.50%						
15	96.91%	96.90%	96.93%	96.87%	96.86%	96.89%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	72.02%	70.28%	75.57%	69.68%	67.45%	71.67%						
18	96.27%	96.24%	96.32%	96.24%	96.20%	96.30%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	64.36%	62.79%	66.30%	50.86%	46.45%	58.91%						
21	65.38%	63.56%	66.85%	54.60%	51.84%	62.01%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	70.32%	68.50%	72.50%	67.28%	65.77%	70.11%						
24	71.36%	68.47%	73.13%	61.19%	55.99%	64.03%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	70.67%	67.41%	73.34%	60.78%	57.04%	63.83%						
27	68.69%	65.72%	76.07%	59.71%	55.34%	63.00%						

Table 7. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

					AB	OVE_	80					
		po	pula	tion	500			po	pula	tion	100	
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	-	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	-	-	1	1	1	1	-	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	398	-	-	-	-	-	-	-	-	-	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	87	-	-	-	-	-	312	-	-	-	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	325	-	-	-	-	-	-	-	-	-	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	-	-	-	-	-	-	-	-	-	-	-	- 7
21	-	-	-	-	-	-	-	-	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	2
23	-	-	-	-	-	-	-	-	-	-	-	-
24	-	-	-	-	-	-	-	-	-	-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26		-	-	-	-	-	-	-	-	-	-	-
27	458	-	-	-	-	-	-	-	-	-	-	-

 ${\bf Table~8.~Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.}$

	ABO	VE_	80	
	pop.			
case #	avg. t	ime	avg.	time
1		2.99		0.19
2	4	18.77		9.14
3	5	51.12		8.99
2 3 4		2.99		0.19
5	5	50.35		8.89
6 7	4	19.54		8.87
7		2.99		0.19
8	Ę	51.38		8.95
9	4	19.62		9.20
10		3.09		0.20
11	Ę	51.71		9.12
12	5	50.98		9.06
13		3.18		0.20
14	5	55.31		9.23
15	5	51.55		8.79
16		3.01		0.19
17	Ę	52.29		8.95
18	5	50.44		8.78
19		3.00		0.19
20	4	17.09		8.99
21	6	64.66		9.12
22		2.95		0.20
23	4	17.62		9.05
24	6	32.07		9.33
25		2.96		0.19
26	4	17.35		8.99
27	(34.15		9.26

 ${\bf Table~9.~Reached~percentages~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

	ABOVE_90										
	fitness value										
case #	pop	oulation	500	pop	opulation 100						
"	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	97.57%	97.54%	97.62%	97.45%	97.37%	97.54%					
3	99.32%	99.30%	99.34%	99.30%	99.29%	99.30%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	94.62%	94.52%	94.67%	94.26%	94.22%	94.32%					
6	96.30%	96.25%	96.36%	96.19%	96.09%	96.27%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	94.80%	94.69%	94.90%	94.68%	94.49%	94.90%					
9	97.54%	97.47%	97.69%	97.49%	97.42%	97.61%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	86.65%	84.73%	88.22%	77.58%	74.21%	81.51%					
12	99.12%	99.12%	99.13%	99.11%	99.11%	99.11%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	85.47%	83.40%	88.35%	82.65%	81.22%	83.96%					
15	96.94%	96.90%	97.00%	96.88%	96.86%	96.90%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	85.16%	84.55%	86.26%	80.06%	77.91%	82.39%					
18	96.32%	96.26%	96.37%	96.25%	96.20%	96.34%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	75.47%	71.53%	78.09%	59.03%	58.37%	60.18%					
21	78.85%	76.96%	81.14%	64.71%	62.66%	67.07%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	76.81%	74.95%	78.49%	75.57%	73.68%	78.01%					
24	84.00%	82.88%	85.11%	76.53%	73.86%	79.31%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	78.23%	76.29%	81.48%	69.94%	64.49%	73.91%					
27	81.33%	78.19%	84.57%	69.42%	67.10%	71.08%					

Table 10. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						AB	OVE_	90					
				pula					_	pula			
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	-	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	_	1	1	1	1	1
	11	74	132	276	-	-	-	189	259	-	-	-	-
	12	1	1	1	1	1		1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	19	38	132		-	-	56	199		-	-	-
	15	1	1	1	1	1		1	1	1	1	1	-
	16	1	1	1	1	1	1		1	1	1	1	1
	17	62	127	354		-	-	235	304		-	-	-
	18	1	1	1	1	1		1	1	1	1	1	
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	386		-	-	-	-	-	-	-	-	-	-
	21	282	445		-	-	-	-	-	-	-	-	-
	22	1	1	1	1	1	1		1	1	1	1	1
	23	178		-	-	-	-	337		-	-	-	-
	24	110	185	485		-	-	365		-	-	-	-
1	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	280	319		-	-	-	-	-	-	-	-	-
	27	202	350	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 11.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	ABOVE_	90
	pop. 500	
case #	avg. time	avg. time
1	3.11	0.19
2	52.17	8.86
3	49.82	8.75
4	3.09	0.19
1 2 3 4 5	57.46	8.98
	55.29	9.12
6 7	3.27	0.20
8	56.77	9.37
9	54.32	9.36
10	3.23	0.20
11	58.83	9.39
12	51.51	8.73
13	3.02	0.19
14	55.73	9.13
15	64.51	9.02
16	3.00	0.19
17	60.13	9.26
18	55.88	8.92
19	3.15	0.20
20	49.86	9.23
21	75.61	9.72
22	3.03	0.19
23	47.96	9.59
24	63.90	9.69
25	3.13	0.19
26	46.48	9.13
27	67.30	9.47

 ${\bf Table~12.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ABOVE_95											
			fitness	value								
case #	pop	oulation	500	pop	ulation	100						
	avg min		max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.68%	97.63%	97.74%	97.50%	97.41%	97.60%						
3	99.33%	99.32%	99.34%	99.31%	99.29%	99.33%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.74%	94.64%	94.82%	94.35%	94.28%	94.48%						
6	96.39%	96.27%	96.51%	96.25%	96.21%	96.39%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.87%	94.76%	94.96%	94.67%	94.53%	94.78%						
9	97.57%	97.51%	97.64%	97.47%	97.42%	97.56%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	88.79%	85.11%	92.30%	81.71%	77.54%	83.18%						
12	99.15%	99.13%	99.18%	99.12%	99.11%	99.13%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	88.43%	87.87%	89.31%	85.40%	83.37%	86.56%						
15	96.99%	96.91%	97.08%	96.92%	96.88%	96.98%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	89.20%	87.71%	90.81%	82.12%	79.44%	85.19%						
18	96.42%	96.34%	96.51%	96.29%	96.22%	96.34%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	79.16%	76.79%	82.44%	69.04%	65.48%	74.22%						
21	83.38%	80.77%	86.07%	70.30%	68.46%	73.08%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	83.18%	81.40%	84.43%	78.48%	76.15%	80.80%						
24	89.38%	88.19%	90.13%	81.21%	77.54%	85.42%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	83.87%	81.41%	86.51%	73.07%	71.53%	75.10%						
27	87.63%	84.55%	90.66%	71.22%	64.17%	75.49%						

Table 13. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ABOVE_95											
			pula						pula			
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	. 1	1	1	1	1	1
5	1	1	1	1	-	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	. 1	1	1	1	1	1
8	1	1	1	1	-	-	1	1	1	1	-	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1		1	1	1	1	1
11	64	136	226	399	-	-	101	325	-	-	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	. 1	1	1	1	1	1
14	13	18	83	-	-	-	32	69	224	-	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1		1	1	1	1	1
17	34	78	206	364		-	137	348	485	-	-	-
18	1	1	1	1	1		1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	345	423		-	-	-	-	-	-	-	-	-
21	174	356	435	-	-	-	-	-	-	-	-	-
22	1	1	1	1	1	1		1	1	1	1	1
23	96	227		-	-	-	219	458		-	-	-
24	90	162	263	386		-	325	396	492		-	-
25	1	1	1	1	1	1		1	1	1	1	1
26	131	217	423		-	-	498		-	-	-	-
27	128	229	377	396	-	-	492	-	-	-	-	-

 $\textbf{Table 14.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	ABOVE_95									
	pop. 500	pop. 100								
case #	avg. time	avg. time								
1	3.03	0.18								
2	56.40	8.98								
3	53.43	9.01								
1 2 3 4	3.22	0.20								
5	62.28	9.21								
5 6 7 8	63.54	9.04								
7	3.00	0.19								
	60.72	9.32								
9	58.65	9.27								
10	3.15	0.19								
11	71.45	9.48								
12	55.86	8.91								
13	3.02	0.18								
14	51.87	9.16								
15	77.10	9.30								
16	2.98	0.19								
17	56.01	9.22								
18	63.37	9.20								
19	3.01	0.19								
20	49.03	9.45								
21	51.21	9.18								
22	2.98	0.19								
23	47.49	9.18								
24	51.25	9.28								
25	2.97	0.18								
26	47.00	9.31								
27	51.26	9.37								

 ${\bf Table~15.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	FR_LIN_5											
			fitness	value								
case #	pop	oulation	500	pop	oulation	100						
"	avg	min	max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.52%	97.51%	97.54%	97.41%	97.40%	97.44%						
3	99.30%	99.29%	99.30%	99.29%	99.29%	99.30%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.60%	94.51%	94.70%	94.36%	94.28%	94.54%						
6	96.18%	96.14%	96.21%	96.13%	96.09%	96.20%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.65%	94.62%	94.68%	94.59%	94.49%	94.69%						
9	97.44%	97.38%	97.49%	97.39%	97.37%	97.44%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	71.07%	70.74%	71.62%	70.16%	69.95%	70.36%						
12	99.12%	99.11%	99.17%	99.11%	99.10%	99.12%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	65.30%	64.26%	68.35%	62.29%	59.39%	66.49%						
15	96.93%	96.90%	96.97%	96.89%	96.86%	96.95%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	61.92%	60.42%	62.59%	60.01%	59.33%	60.61%						
18	96.26%	96.23%	96.33%	96.21%	96.20%	96.22%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	21.62%	14.59%	26.28%	9.93%	3.43%	17.16%						
21	39.68%	39.35%	40.00%	37.42%	37.29%	37.92%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	42.41%	38.29%	48.38%	27.44%	23.67%	33.39%						
24	35.45%	32.59%	41.50%	33.31%	30.31%	37.62%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	28.08%	23.69%	30.28%	20.47%	14.37%	24.47%						
27	34.38%	32.43%	35.60%	32.74%	30.90%	34.76%						

Table 16. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						FR	LIN	_5					
			_	_	tion					pula			
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	-	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	-	-	-	-	-	-	-	-	-	-	-	-
	12	1	1	1	1	1		1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	-	-	-	-	-	-	-	-	-	-	-	-
	15	1	1	1	1		-	1	1	1	1	1	
	16	1	1	1	1	1	1	1	1	1	1	1	1
	17	-	-	-	-	-	-	-	-	-	-	-	-
	18	1	1	1	1		-	1	1	1	1	1	
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	-	-	-	-	-	-	-	-	-	-	-	-
	21	-	-	-	-	-	-	-	-	-	-	-	-
	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	-	-	-	-	-	-	-	-	-	-	-	-
	24	-	-	-	-	-	-	-	-	-	-	-	-
	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	-	-	-	-	-	-	-	-	-	-	-	-
	27	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 17.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	FR_LIN_	_5
	pop. 500	
case #	avg. time	avg. time
1	0.47	0.09
2	59.01	11.70
3	58.76	11.64
4	0.47	0.09
2 3 4 5	59.89	11.67
6	59.46	11.87
6 7	0.48	0.10
8	62.19	11.77
9	59.26	11.69
10	0.46	0.09
11	58.78	12.11
12	61.12	11.93
13	0.49	0.10
14	62.76	12.31
15	62.67	12.11
16	0.47	0.09
17	59.59	11.95
18	60.16	11.71
19	0.49	0.10
20	62.40	12.11
21	58.86	11.69
22	0.47	0.09
23	60.42	12.35
24	62.46	12.33
25	0.49	0.10
26	62.79	11.84
27	59.25	11.67

 ${\bf Table~18.~Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

	FR_LIN_7										
			fitness	value							
case #	pop	ulation	500	pop	opulation 100						
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	97.57%	97.55%	97.63%	97.46%	97.40%	97.55%					
3	99.31%	99.29%	99.33%	99.30%	99.29%	99.31%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	94.62%	94.53%	94.65%	94.37%	94.28%	94.45%					
6	96.20%	96.18%	96.23%	96.17%	96.09%	96.26%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	94.69%	94.63%	94.75%	94.60%	94.52%	94.64%					
9	97.48%	97.41%	97.56%	97.42%	97.37%	97.51%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	73.70%	71.98%	75.97%	70.75%	69.95%	71.76%					
12	99.12%	99.11%	99.13%	99.11%	99.10%	99.11%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	76.57%	75.01%	78.74%	72.90%	70.22%	75.95%					
15	96.91%	96.89%	96.93%	96.90%	96.88%	96.96%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	68.79%	66.49%	70.89%	66.56%	63.26%	69.51%					
18	96.27%	96.24%	96.30%	96.21%	96.19%	96.24%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	35.81%	32.37%	37.43%	22.01%	17.73%	30.66%					
21	43.64%	41.56%	44.99%	39.08%	37.29%	40.50%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	56.48%	54.07%	58.99%	50.23%	43.80%	57.70%					
24	53.76%	50.35%	58.81%	43.33%	41.13%	47.04%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	46.94%	41.87%	49.52%	38.50%	36.89%	42.80%					
27	48.73%	46.85%	50.31%	40.97%	38.91%	43.07%					

Table 19. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

					FR	LIN	7					
			pula							tion		
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	-	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	-	-	1	1	1	1	-	-
9	1	1	1	1	1		1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	367		-	-	-	-	-	-	-	-	-	-
12	1	1	1	1	1		1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	110		-	-	-	-	234		-	-	-	-
15	1	1	1	1	1		1	1	1	1	1	
16	1	1	1	1	1	1	1	1	1	1	1	1
17	-	-	-	-	-	-	-	-	-	-	-	-
18	1	1	1	1	1		1	1	1	1	1	
19	1	1	1	1	1	1	1	1	1	1	1	1
20	-	-	-	-	-	-	-	-	-	-	-	-
21 22	- 1	- 1	- 1	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1	1
23	I	1	1	1	1	1	1	1	1	1	1	1
23	-	-	-	-	-	-	-	-	-	-	-	-
25	- 1	1	1	- 1	1	1	1	- 1	- 1	- 1	1	1
26	1	1	1	1	1	1	1	1	1	1	1	1
27		_	-	_	-	-		-	-	_	_	-
21	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 20.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	FR_	LIN	_7	
			pop.	
case #	avg.	time	avg.	time
1		0.47		0.09
2		58.82		11.58
3		58.84		11.56
4		0.46		0.09
5		59.04		11.64
6		60.31		12.23
1 2 3 4 5 6 7 8		0.49		0.10
8		61.11		12.02
9		61.98		11.72
10		0.47		0.09
11		58.60		11.61
12		58.55		11.59
13		0.47		0.09
14		60.19		11.85
15		59.15		11.63
16		0.49		0.10
17		62.28		12.07
18		58.45		11.60
19		0.47		0.09
20		59.30		11.71
21		59.51		12.12
22		0.49		0.10
23		63.69		12.49
24		63.03		12.35
25		0.49		0.10
26		63.52		12.35
27		62.28		12.27

 ${\bf Table~21.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	FR_LIN_10											
			fitness	value								
case #	pop	ulation	500	pop	oulation	100						
"	avg	min	max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.59%	97.54%	97.64%	97.49%	97.45%	97.54%						
3	99.31%	99.30%	99.33%	99.30%	99.29%	99.31%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.72%	94.70%	94.75%	94.35%	94.28%	94.61%						
6	96.33%	96.26%	96.38%	96.32%	96.23%	96.40%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.77%	94.67%	94.91%	94.66%	94.60%	94.76%						
9	97.48%	97.43%	97.53%	97.46%	97.37%	97.55%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	78.83%	75.88%	80.44%	72.28%	70.45%	75.27%						
12	99.14%	99.11%	99.18%	99.11%	99.11%	99.12%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	82.90%	80.78%	84.61%	79.35%	77.83%	80.87%						
15	96.94%	96.89%	97.00%	96.89%	96.88%	96.90%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	80.23%	78.14%	82.56%	74.81%	71.02%	77.13%						
18	96.32%	96.26%	96.39%	96.23%	96.19%	96.26%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	48.98%	42.67%	55.33%	37.09%	35.04%	41.62%						
21	58.31%	56.48%	60.71%	46.24%	43.85%	49.91%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	66.55%	63.98%	69.56%	61.26%	56.42%	64.47%						
24	74.39%	70.46%	79.61%	61.24%	57.44%	64.50%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	61.70%	60.34%	63.23%	49.57%	47.81%	52.14%						
27	67.00%	63.15%	70.01%	56.48%	53.46%	62.49%						

Table 22. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						FR	LIN	10					
			po	pula	tion	500			po	pula	tion	100	
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	-	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
]]	10	1	1	1	1	1	1	1	1	1	1	1	1
1	11	123	400	-	-	-	-	280	-	-	-	-	-
1	12	1	1	1	1	1	-	1	1	1	1	1	-
]	13	1	1	1	1	1	1	1	1	1	1	1	1
	4	33	48	-	-	-	-	88	286	-	-	-	-
1	15	1	1	1	1	1	-	1	1	1	1	1	-
	16	1	1	1	1	1	1	1	1	1	1	1	1
	17	152	320		-	-	-	338	-	-	-	-	-
	18	1	1	1	1	1	-	1	1	1	1	1	-
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	-	-	-	-	-	-	-	-	-	-	-	-
1	21	-	-	-	-	-	-	-	-	-	-	-	-
1	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	-	-	-	-	-	-	-	-	-	-	-	-
	24	263		-	-	-	-	-	-	-	-	-	-
1	25	1	1	1	1	1	1	1	1	1	1	1	1
1	26	-	-	-	-	-	-	-	-	-	-	-	-
2	27	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 23.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	FR_	LIN_	10
			pop. 100
case #	avg.	time	avg. time
1		0.47	0.10
2		59.07	11.73
3		60.25	11.78
1 2 3 4 5 6 7 8		0.48	0.10
5		60.90	12.15
6		61.16	12.05
7		0.49	0.10
8		59.88	11.60
9		59.08	11.61
10		0.48	0.09
11		60.19	11.74
12		58.05	11.77
13		0.46	0.09
14		59.94	12.00
15		58.96	11.67
16		0.47	0.09
17		59.90	11.94
18		61.22	11.88
19		0.49	0.10
20		63.06	12.35
21		59.43	12.02
22		0.49	0.10
23		63.11	12.42
24		62.87	12.42
25		0.49	0.10
26		62.69	12.40
27		61.41	11.89

 ${\bf Table~24.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~{\rm Cases~1-27~in~our~experiments.}$

FR_LIN_20									
			fitness	value					
case #	pop	oulation	500	pop	population				
	avg	min	max	avg	min	max			
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
2	97.63%	97.59%	97.71%	97.57%	97.46%	97.70%			
3	99.34%	99.31%	99.38%	99.31%	99.30%	99.33%			
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
5	94.88%	94.70%	95.07%	94.41%	94.31%	94.50%			
6	96.40%	96.30%	96.47%	96.22%	96.12%	96.31%			
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
8	94.93%	94.82%	95.03%	94.78%	94.60%	95.02%			
9	97.55%	97.51%	97.58%	97.51%	97.46%	97.64%			
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
11	88.15%	86.05%	90.11%	81.72%	79.65%	83.76%			
12	99.15%	99.13%	99.18%	99.12%	99.11%	99.14%			
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
14	87.25%	85.43%	88.57%	83.73%	82.77%	85.13%			
15	96.97%	96.94%	97.02%	96.89%	96.86%	96.93%			
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
17	89.05%	87.89%	89.72%	82.50%	79.65%	85.11%			
18	96.44%	96.39%	96.54%	96.29%	96.21%	96.45%			
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
20	72.76%	68.09%	76.72%	54.26%	50.41%	61.56%			
21	77.03%	73.90%	80.05%	64.79%	61.87%	67.92%			
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
23	76.55%	74.24%	78.20%	75.03%	73.70%	76.72%			
24	87.34%	84.83%	89.60%	76.13%	73.06%	80.07%			
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
26	77.71%	75.89%	78.87%	64.70%	59.75%	68.13%			
27	82.83%	81.34%	85.29%	68.22%	63.92%	71.09%			

Table 25. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

FR_LIN_20												
			pula						pula			
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	26	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	97	-	1	1	1	1	48	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	54	111	173	477	-	-	143	385	-	-	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	17	27	81	-	-	-	43	118	330	-	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	55	94	176	501	-	-	168	322	406	-	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	305	-	-	-	-	-	-	-	-	-	-	-
21	185	463	-	-	-	-	-	-	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	1
23	133	-	-	-	-	-	322		-	-	-	- 7
24	108	151	199	-	-	-	383	435		-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	295		-	-	-	-	-	-	-	-	-	-
27	190	278	473	-	-	-	-	-	-	-	-	-

Table 26. Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.

	FR_LIN_	_20
		pop. 100
case #	avg. time	avg. time
1	0.57	
1 2 3 4 5 6 7 8	61.69	12.00
3	60.46	11.90
4	0.48	0.10
5	60.00	11.76
6	59.39	11.66
7	0.48	0.10
8	60.98	11.93
9	60.18	11.62
10	0.48	0.09
11	61.11	11.81
12	57.87	11.56
13	0.49	0.11
14	61.46	12.31
15	61.96	12.09
16	0.49	0.10
17	61.61	12.10
18	60.47	11.68
19	0.48	0.10
20	62.12	12.72
21	64.73	12.65
22	0.49	0.10
23	63.76	12.76
24	62.05	12.43
25	0.47	0.10
26	63.71	12.81
27	64.62	12.34

 ${\bf Table~27.~Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

OQ_LIN_5									
			$_{ m fitness}$	value					
case #	pop	oulation	500	pop	population 10				
"	avg	min	max	avg	min	max			
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
2	99.69%	99.64%	99.79%	98.74%	98.60%	98.99%			
3	99.87%	99.82%	99.92%	99.59%	99.52%	99.69%			
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
5	98.76%	98.37%	99.06%	97.00%	96.66%	97.48%			
6	99.29%	99.17%	99.42%	98.07%	97.85%	98.35%			
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
8	99.22%	99.09%	99.49%	97.34%	96.92%	97.70%			
9	99.61%	99.59%	99.65%	98.90%	98.80%	99.01%			
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
11	96.36%	95.15%	97.00%	89.47%	87.25%	91.32%			
12	99.80%	99.72%	99.85%	99.38%	99.26%	99.57%			
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
14	97.34%	96.85%	97.75%	93.65%	93.01%	94.38%			
15	98.14%	98.05%	98.25%	97.36%	97.15%	97.62%			
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
17	96.93%	96.47%	97.31%	91.75%	90.24%	93.08%			
18	98.70%	98.51%	98.80%	97.26%	97.13%	97.41%			
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
20	90.34%	89.34%	90.85%	75.67%	74.33%	77.25%			
21	94.72%	92.73%	96.13%	83.26%	80.46%	86.27%			
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
23	93.67%	92.65%	95.09%	85.13%	83.11%	87.25%			
24	95.55%	95.04%	96.06%	81.56%	79.50%	84.37%			
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
26	94.37%	92.04%	96.02%	79.39%	77.04%	82.10%			
27	93.82%	91.90%	95.64%	83.35%	80.51%	85.54%			

Table 28. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

OQ_LIN_5													
			po	pula	tion	500			po	pula	tion	100	
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	15	-	1	1	1	1	73	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	17	-	1	1	1	1	37	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	16	32	62	158	390	-	29	107	249	439	-	-
	12	1	1	1	1	1	-	1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	19	28	39	89	247	-	36	55	101	220	-	-
1	15	1	1	1	1	1	-	1	1	1	1	1	-
	16	1	1	1	1	1	1	1	1	1	1	1	1
	17	26	42	67	121	283	-	57	101	217	379	-	-
	18	1	1	1	1	1	-	1	1	1	1	1	-
1	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	201	255	342	455		-	416		-	-	-	-
	21	92	123	176	267	454		272	393	438		-	-
	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	183	219	265	371	491		227	339	427	-	-	-
1	24	62	80	116	191	452		273	388		-	-	-
	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	151	181	242	334	450		383	469		-	-	-
	27	86	124	169	281	395	-	279	392	482	-	-	-

Table 29. Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.

	OQ_LIN	_5
		pop. 100
case #	avg. time	avg. time
1	0.40	0.08
2	56.52	11.42
3	55.32	10.96
2 3 4 5	0.40	0.08
5	57.91	11.42
6 7 8	56.64	10.71
7	0.40	0.08
8	58.79	11.38
9	56.43	11.34
10	0.40	0.08
11	57.37	10.92
12	55.14	10.68
13	0.38	0.08
14	55.48	10.79
15	54.63	10.51
16	0.39	0.08
17	55.55	10.90
18	55.06	10.61
19	0.38	0.08
20	53.71	10.80
21	54.45	11.33
22	0.40	0.08
23	54.63	10.65
24	55.81	11.02
25	0.40	0.08
26	55.16	11.06
27	57.59	11.38

 ${\bf Table~30.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

OQ_LIN_7											
		fitness value									
case #	pop	ulation	500	pop	oulation	100					
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	99.78%	99.70%	99.82%	98.90%	98.75%	99.03%					
3	99.91%	99.86%	99.94%	99.68%	99.65%	99.72%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	98.76%	98.48%	98.93%	97.25%	96.88%	97.96%					
6	99.21%	99.07%	99.37%	98.29%	98.18%	98.40%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	99.27%	99.16%	99.46%	97.60%	97.19%	98.16%					
9	99.69%	99.60%	99.79%	98.82%	98.59%	99.12%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	96.21%	94.48%	97.85%	90.02%	88.46%	92.43%					
12	99.83%	99.77%	99.88%	99.41%	99.33%	99.52%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	97.75%	97.34%	98.05%	93.97%	93.36%	95.52%					
15	98.30%	97.85%	98.59%	97.45%	97.23%	97.67%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	96.94%	96.37%	97.39%	91.87%	90.67%	92.63%					
18	98.87%	98.67%	99.22%	97.40%	97.20%	97.69%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	92.38%	88.80%	94.80%	75.41%	69.97%	80.63%					
21	95.63%	93.38%	98.00%	80.66%	77.19%	82.83%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	96.00%	94.79%	97.49%	87.21%	84.44%	88.95%					
24	96.04%	95.27%	96.88%	85.77%	83.67%	87.51%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	95.06%	93.99%	96.07%	81.26%	78.88%	85.81%					
27	94.81%	93.60%	96.82%	82.38%	81.01%	83.94%					

Table 31. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

OQ_LIN_7												
			pula					_	pula			
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	2
5	1	1	1	1	16	-	1	1	1	1	66	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	10	-	1	1	1	1	48	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	15	33	56	115	333	-	33	98	220	474	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	16	23	36	74	204	-	30	46	85	217	435	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	24	36	60	117	294	-	57	102	185	367	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	2
20	138	182	251	334	-	-	400	485	-	-	-	-
21	85	111	154	243	400		305	409	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	1
23	108	134	166	248	425	-	170	245	377	-	-	- 7
24	60	77	119	167	398		181	252	404	-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	116	145	200	285	448	-	330	364	499	-	-	-
27	86	113	157	249	399	-	257	409	-	-	-	-

 $\textbf{Table 32.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	OQ_LIN	_7
		pop. 100
case #	avg. time	avg. time
1	0.40	0.08
2	59.83	11.45
3	56.83	11.23
4	0.39	0.08
2 3 4 5	57.77	11.52
6 7	59.13	11.40
7	0.38	0.08
8	56.80	11.13
9	56.90	11.25
10	0.38	0.08
11	56.93	11.14
12	56.99	11.02
13	0.38	0.08
14	57.99	11.22
15	56.37	11.10
16	0.39	0.08
17	56.30	11.27
18	58.83	11.54
19	0.40	0.09
20	58.34	11.45
21	57.67	11.56
22	0.40	0.08
23	56.34	11.54
24	58.28	11.29
25	0.38	0.08
26	55.98	11.28
27	58.37	11.52

 ${\bf Table~33.} \ {\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	OQ_LIN_10										
			fitness	value							
${\rm case}\ \#$	pop	ulation	500	pop	ulation	100					
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	99.75%	99.69%	99.85%	98.97%	98.86%	99.06%					
3	99.93%	99.92%	99.95%	99.65%	99.55%	99.70%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	99.03%	98.60%	99.54%	97.21%	96.37%	98.02%					
6	99.33%	99.26%	99.44%	98.28%	97.96%	98.47%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	99.39%	99.26%	99.55%	97.70%	97.62%	97.80%					
9	99.64%	99.55%	99.70%	98.82%	98.71%	98.90%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	95.63%	94.89%	96.76%	90.39%	88.82%	91.21%					
12	99.83%	99.78%	99.87%	99.38%	99.34%	99.42%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	97.71%	97.52%	97.97%	94.43%	93.60%	95.44%					
15	98.50%	98.35%	98.61%	97.43%	97.34%	97.62%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	96.97%	96.33%	97.63%	91.59%	90.38%	92.57%					
18	99.07%	98.94%	99.21%	97.31%	97.03%	97.55%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	92.00%	88.45%	95.08%	76.95%	74.51%	78.73%					
21	95.79%	94.19%	98.12%	83.06%	79.94%	84.95%					
22	100.00%	100.00%	100.00%		100.00%	100.00%					
23	96.62%	95.88%	97.34%	87.59%	86.14%	90.34%					
24	96.09%	95.17%	97.39%	85.61%	81.60%	88.01%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	95.94%	94.53%	97.46%	83.29%	82.40%	84.24%					
27	95.96%	95.21%	96.56%	81.52%	78.36%	83.94%					

Table 34. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

					OQ	LIN	_10					
		po	pula	tion	500			po	pula	tion	100	
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	13	-	1	1	1	1	68	-
6	1	1	1	1	1	-	1	1	1	1	1	
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	12	-	1	1	1	1	28	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	16	32	59	126	264	-	33	101	234	373	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13		1	1	1	1	1	1	1	1	1	1	1
14	16	23	36	82	206	-	34	50	74	180	466	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16		1	1	1	1	1	1	1	1	1	1	1
17	22	33	59	125	289	-	50	90	153	367		-
18		1	1	1	1	-	1	1	1	1	1	-
19		1	1	1	1	1	1	1	1	1	1	1
20		169	251	378	498		392		-	-	-	-
21	77	110	169	246	407		287	366	501		-	-
22	1	1	1	1	1	1	1	1	1	1	1	2
23		106	145	213	364		157	228	344	478	-	-
24		76	109	191	364		195	282	402		-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26		128	183	272	427		292	397		-	-	-
27	81	99	138	214	418	-	301	404	-	-	-	-

 $\textbf{Table 35.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.}$

	OQ_LIN_	_10
	pop. 500	
case #	avg. time	avg. time
1	0.39	0.08
2	57.51	11.57
3	57.87	11.50
2 3 4 5	0.38	0.08
5	56.71	11.31
6	59.31	11.69
6 7 8	0.40	0.08
8	59.33	12.00
9	60.59	12.13
10	0.41	0.08
11	60.67	11.92
12	59.41	12.03
13	0.40	0.08
14	58.53	11.54
15	56.99	11.91
16	0.40	0.08
17	57.67	11.66
18	57.73	11.45
19	0.38	0.08
20	56.82	11.23
21	57.33	11.76
22	0.41	0.08
23	57.11	11.71
24	58.75	11.46
25	0.39	0.08
26	56.68	11.53
27	57.77	11.46

 ${\bf Table~36.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ORDER_LIN									
			fitness	value						
case #	pop	ulation	500	pop	opulation 100					
	avg	min	max	avg	min	max				
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
2	99.77%	99.74%	99.81%	98.94%	98.88%	99.10%				
3	99.95%	99.93%	99.97%	99.65%	99.62%	99.69%				
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
5	98.75%	98.52%	99.14%	97.56%	97.36%	98.04%				
6	99.44%	99.31%	99.61%	98.08%	97.81%	98.26%				
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
8	99.35%	99.22%	99.44%	97.77%	97.39%	97.96%				
9	99.73%	99.67%	99.77%	98.82%	98.54%	99.10%				
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
11	96.72%	95.93%	97.70%	91.47%	89.09%	93.49%				
12	99.84%	99.80%	99.86%	99.42%	99.37%	99.51%				
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
14	98.04%	97.87%	98.30%	94.34%	94.03%	95.21%				
15	98.19%	98.02%	98.53%	97.52%	97.41%	97.70%				
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
17	97.38%	96.88%	97.88%	92.15%	91.30%	93.11%				
18	99.02%	98.90%	99.17%	97.77%	97.45%	98.15%				
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
20	93.52%	92.69%	95.67%	79.39%	77.04%	82.16%				
21	95.17%	93.51%	97.15%	82.51%	80.99%	83.87%				
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
23	96.99%	95.81%	98.08%	87.18%	84.81%	88.75%				
24	95.88%	95.19%	96.84%	84.22%	80.18%	87.12%				
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
26	96.17%	95.09%	97.12%	82.32%	80.61%	83.52%				
27	94.89%	91.74%	96.25%	85.37%	83.98%	87.50%				

Table 37. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ORDER_LIN											
	population 500						population 100					
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	13	-	1	1	1	1	68	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	10	-	1	1	1	1	35	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	10	24	55	129	315	-	27	74	182	393	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	2
14	14	18	27	61	177	-	27	44	88	200	449	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	20	32	52	100	248	-	51	97	193	327	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	107	136	189	328	438		406	456		-	-	-]
21	86	112	156	244	386		240	367	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	2
23	66	85	116	186	333		182	276	370	-	-	-
24	61	80	113	191	406		222	347	414	-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	80	101	138	216	401		299	408		-	-	-
27	76	111	164	267	421	-	210	333	444	-	-	-

 ${\bf Table~38.~Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.}$

	ORDER_LIN									
	pop. 500	pop. 100								
case #	avg. time	avg. time								
1	0.40	0.08								
1 2 3 4 5 6 7 8 9	58.47	11.98								
3	60.11	12.18								
4	0.40	0.08								
5	58.30	11.67								
6	57.66	11.68								
7	0.39	0.08								
8	58.13	11.68								
9	58.62	11.69								
10	0.39	0.08								
11	57.48	11.87								
12	58.46	11.71								
13	0.38	0.08								
14	57.90	11.61								
15	58.16	11.72								
16	0.40	0.08								
17	59.96	12.11								
18	60.99	12.24								
19	0.40	0.08								
20	60.82	11.98								
21	58.16	11.56								
22	0.38	0.08								
23	59.04	11.85								
24	60.44	11.74								
25	0.38	0.08								
26	57.54	11.53								
27	57.70	11.58								

 ${\bf Table~39.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ORDER_LOG									
			fitness	value						
case #	pop	ulation	500	pop	ulation	ation 100				
"	avg	min	max	avg	min	max				
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
2	99.79%	99.72%	99.86%	98.99%	98.82%	99.22%				
3	99.92%	99.91%	99.93%	99.65%	99.56%	99.71%				
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
5	98.94%	98.64%	99.25%	97.17%	96.87%	97.53%				
6	99.37%	99.21%	99.55%	98.52%	98.36%	98.68%				
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
8	99.39%	99.29%	99.45%	97.63%	97.11%	98.07%				
9	99.63%	99.58%	99.69%	98.95%	98.84%	99.11%				
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
11	96.64%	95.41%	97.79%	90.83%	88.93%	92.01%				
12	99.84%	99.81%	99.88%	99.42%	99.36%	99.46%				
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
14	97.91%	97.61%	98.41%	94.89%	94.56%	95.54%				
15	98.32%	98.20%	98.42%	97.35%	97.21%	97.48%				
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
17	97.68%	97.22%	98.22%	92.64%	92.41%	92.92%				
18	99.06%	98.75%	99.38%	97.60%	97.38%	97.81%				
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
20	93.05%	90.28%	95.06%	80.71%	79.33%	81.68%				
21	95.40%	93.55%	97.18%	83.21%	80.63%	86.90%				
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
23	96.83%	96.27%	97.57%	86.59%	84.51%	89.08%				
24	96.17%	95.38%	97.24%	86.60%	85.04%	89.12%				
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
26	94.77%	93.99%	95.98%	84.06%	81.74%	86.81%				
27	95.69%	95.35%	96.03%	84.35%	80.47%	88.85%				

Table 40. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ORDER_LOG												
			po	pula	tion	500		population 100					
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	11	-	1	1	1	1	49	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	11	-	1	1	1	1	31	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	11	24	47	96	301	-	29	83	220	395	-	-
1	12	1	1	1	1	1	-	1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	2
	14	15	21	32	70	207	-	28	43	77	172	458	-
1	15	1	1	1	1	1	-	1	1	1	1	1	-
1	16	1	1	1	1	1	1	1	1	1	1	1	1
1	17	21	31	50	92	224	-	54	87	147	296		-
!	18	1	1	1	1	1	-	1	1	1	1	1	-
1	19	1	1	1	1	1	1	1	1	1	1	1	1
1	20	114	156	212	340	477		343	408		-	-	-
1	21	73	102	152	215	391		248	342	310	-	-	-
1	22	1	1	1	1	1	1	1	1	1	1	1	1
1	23	72	91	123	197	381		177	280	388		-	-
1	24	50	70	91	165	392		191	246	424		-	-
1	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	90	116	167	265	487		246	357	446		-	-
	27	79	103	144	214	435	-	220	331	372	-	-	-

 $\textbf{Table 41.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	ORDER_LOG									
	pop. 500									
case #	avg. time	avg. time								
1	0.40	12.03								
2	59.64	11.86								
3	58.89	11.92								
2 3 4 5	0.39	0.08								
5	59.02	11.86								
	58.43	11.89								
6 7	0.39	0.08								
8	58.97	12.30								
9	61.66	12.18								
10	0.39	0.08								
11	59.78	12.37								
12	62.44	12.33								
13	0.39	0.09								
14	61.79	12.38								
15	60.80	12.37								
16	0.41	0.08								
17	61.64	12.35								
18	59.85	11.90								
19	0.39	0.08								
20	58.55	12.20								
21	61.76	12.08								
22	0.41	0.08								
23	61.48	12.38								
24	61.86	12.37								
25	0.41	0.08								
26	59.59	12.10								
27	58.96	11.86								

 ${\bf Table~42.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	TOP_10										
			fitness	value							
case #	pop	oulation	500	pop	pulation 100						
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	99.67%	99.57%	99.79%	98.91%	98.81%	98.99%					
3	99.88%	99.85%	99.93%	99.60%	99.56%	99.63%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	98.46%	98.28%	98.65%	96.87%	96.60%	97.18%					
6	99.33%	99.22%	99.54%	98.29%	98.17%	98.44%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	99.05%	98.83%	99.39%	97.49%	97.08%	97.71%					
9	99.60%	99.52%	99.69%	98.67%	98.56%	98.75%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	95.17%	93.79%	96.25%	88.69%	86.44%	90.20%					
12	99.78%	99.72%	99.82%	99.40%	99.30%	99.51%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	97.41%	96.85%	97.80%	94.11%	93.42%	94.53%					
15	98.05%	97.96%	98.12%	97.38%	97.31%	97.46%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	96.43%	95.83%	97.13%	91.06%	89.98%	92.62%					
18	98.70%	98.34%	98.98%	97.63%	97.32%	97.77%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	91.48%	87.83%	94.20%	76.04%	72.53%	79.97%					
21	94.10%	90.96%	95.78%	80.12%	77.40%	83.85%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	95.10%	93.67%	96.67%	85.12%	82.79%	89.16%					
24	94.68%	94.03%	95.85%	85.74%	83.73%	87.36%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	93.88%	92.48%	95.69%	80.95%	76.80%	87.24%					
27	94.51%	92.13%	96.36%	82.18%	77.80%	86.22%					

Table 43. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	TOP_10											
	population 500						population 100					
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	8	-	1	1	1	1	45	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	2
8	1	1	1	1	9	-	1	1	1	1	30	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	12	27	52	125	435	-	34	109	235	413	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	12	16	28	64	172	-	24	37	71	207	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	21	31	52	99	313		62	110	200	377		-
18	1	1	1	1	1		1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	114	150	224	329		-	430		-	-	-	-
21	68	98	165	286	400		291	412		-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	1
23	54	68	100	173	349		210	283	351		-	-
24	65	87	130	215	340		213	333	431		-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	79	102	140	240	433		325	437	432		-	-
27	84	111	150	254	355	-	298	397	450	-	-	-

 $\textbf{Table 44.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. } \\$

	TOP_1	0
		pop. 100
case #	avg. time	avg. time
1	0.73	0.09
2	55.53	10.45
3	54.85	10.67
2 3 4	0.90	0.09
5	51.86	11.02
6	57.91	10.84
6 7	0.74	0.08
8	54.42	10.61
9	54.91	10.76
10	0.74	0.08
11	52.91	10.49
12	54.69	10.67
13	0.91	0.09
14	52.61	10.59
15	54.60	10.71
16	0.80	0.09
17	53.83	10.52
18	57.15	10.65
19	0.77	0.08
20	55.57	10.75
21	56.63	11.00
22	0.90	0.09
23	52.06	10.43
24	54.69	10.59
25	0.84	0.09
26	52.23	10.44
27	54.45	10.62

 ${\bf Table~45.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~{\rm Cases~1-27~in~our~experiments.}$

TOP_20										
	fitness value									
case #	pop	ulation	500	pop	oulation	100				
"	avg	min	max	avg	min	max				
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
2	99.61%	99.51%	99.71%	98.87%	98.73%	98.98%				
3	99.88%	99.82%	99.95%	99.59%	99.51%	99.72%				
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
5	98.63%	98.11%	98.97%	96.84%	96.25%	97.17%				
6	99.26%	98.87%	99.46%	98.06%	97.64%	98.29%				
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
8	98.88%	98.84%	98.96%	97.24%	96.87%	97.76%				
9	99.54%	99.38%	99.69%	98.75%	98.63%	98.88%				
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
11	95.50%	94.61%	97.22%	90.18%	87.34%	92.52%				
12	99.70%	99.67%	99.74%	99.38%	99.25%	99.44%				
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
14	97.16%	96.43%	97.48%	93.05%	91.57%	93.99%				
15	97.95%	97.71%	98.15%	97.27%	97.13%	97.55%				
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
17	96.49%	96.01%	96.97%	90.73%	89.36%	92.91%				
18	98.93%	98.62%	99.13%	97.21%	96.91%	97.53%				
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
20	91.40%	87.61%	93.26%	74.88%	70.85%	79.82%				
21	94.36%	93.79%	94.68%	81.01%	79.15%	82.13%				
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
23	94.76%	93.04%	96.50%	82.47%	79.79%	87.11%				
24	95.21%	93.93%	96.31%	84.54%	77.22%	88.50%				
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
26	93.45%	92.49%	95.24%	82.39%	79.80%	83.89%				
27	94.19%	93.06%	95.06%	81.84%	78.25%	85.67%				

Table 46. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

TOP_20												
	population 500						population 100					
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	13	-	1	1	1	1	57	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	13	-	1	1	1	1	32	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	2
11	13	28	52	118	377	-	34	110	230	418	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	17	23	33	77	215	-	31	49	85	206	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	26	39	61	105	290	-	62	120	219	323		-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	141	180	251	361	-	-	437		-	-	-	-
21	79	122	173	275	-	-	290	434	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	1
23	114	143	185	269	372		262	369	414		-	-
24	64	84	119	203	383		244	297	395		-	-
25	1	1 10	1	1	1	1	1	1	1	1	1	1
26	108	148	201	307	491		307	424		-	-	-
27	84	112	168	280	483	-	293	365	490	-	-	-

 $\textbf{Table 47.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	TOP_20							
	pop. 500							
case #	avg. time	avg. time						
1	1.15	0.09						
2	55.75	10.31						
3	63.48	10.35						
4	1.29	0.11						
2 3 4 5	56.68	10.15						
	65.41	10.45						
6 7	1.26	0.10						
8	57.20	10.26						
9	64.39	10.41						
10	1.22	0.10						
11	58.03	10.35						
12	62.95	10.33						
13	1.34	0.12						
14	55.89	10.40						
15	65.59	10.53						
16	1.32	0.11						
17	58.02	10.90						
18	70.42	10.74						
19	1.27	0.10						
20	59.58	10.64						
21	68.04	10.56						
22	1.41	0.11						
23	56.58	10.59						
24	64.19	10.71						
25	1.43	0.12						
26	57.16	10.58						
27	62.34	10.31						

 ${\bf Table~48.~Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

TOP_30											
		fitness value									
case #	pop	ulation	500	pop	opulation 100						
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	99.40%	99.32%	99.59%	98.51%	98.43%	98.63%					
3	99.83%	99.76%	99.87%	99.52%	99.47%	99.57%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	98.23%	97.90%	98.57%	96.23%	95.93%	96.54%					
6	99.09%	98.92%	99.30%	98.05%	97.75%	98.46%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	98.76%	98.63%	99.09%	97.06%	96.68%	97.46%					
9	99.34%	99.29%	99.46%	98.45%	98.29%	98.67%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	95.00%	93.61%	96.30%	87.59%	84.75%	88.99%					
12	99.68%	99.59%	99.77%	99.27%	99.20%	99.31%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	92.33%	86.05%	96.44%	91.28%	90.70%	92.49%					
15	97.91%	97.71%	98.04%	97.26%	96.96%	97.36%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	95.33%	94.73%	95.99%	89.20%	88.53%	90.78%					
18	98.44%	98.11%	98.95%	96.78%	96.61%	96.95%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	60.40%	56.29%	64.49%	68.67%	63.13%	75.44%					
21	92.47%	91.40%	93.10%	75.52%	69.05%	79.01%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	25.66%	21.23%	36.67%	82.48%	77.78%	85.46%					
24	88.58%	74.48%	96.14%	82.34%	78.96%	84.57%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	42.93%	33.45%	54.37%	77.58%	72.56%	80.68%					
27	92.54%	89.69%	94.28%	75.71%	72.14%	78.93%					

Table 49. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

TOP_30												
	population 500					population 100						
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	2
5	1	1	1	1	31	-	1	1	1	1	117	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	20	-	1	1	1	1	70	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	19	36	66	147	357	-	72	156	313	-	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	25	37	67	121	350	-	43	62	130	368	-	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	37	54	89	145	408	-	81	135	274	459	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	-	-	-	-	-	-	485		-	-	-	-]
21	114	147	216	380		-	408	-	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	2
23	-	-	-	-	-	-	242	386	486	-	-	-
24	101	221	294	332	324	-	297	342		-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	-	-	-	-	-	-	393	484	-	-	-	-
27	122	166	222	339	-	-	412	-	-	-	-	-

 ${\bf Table~50.}~{\rm Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.$

TOP_30							
	pop. 500	pop. 100					
case #	avg. time	avg. time					
1	1.65	0.11					
2	63.45	10.06					
3	79.64	10.01					
1 2 3 4 5 6 7 8	1.86	0.15					
5	65.81	9.88					
6	82.80	10.24					
7	1.69	0.11					
8	63.14	9.98					
9	82.45	10.23					
10	1.72	0.11					
11	62.65	9.83					
12	86.15	9.88					
13	1.90	0.14					
14	63.76	9.73					
15	80.83	9.83					
16	1.80	0.13					
17	65.82	9.96					
18	82.61	10.00					
19	1.74	0.11					
20	52.58	9.96					
21	80.56	10.18					
22	1.97	0.16					
23	50.09	9.46					
24	70.70	10.04					
25	1.91	0.13					
26	52.34	9.71					
27	77.64	10.21					

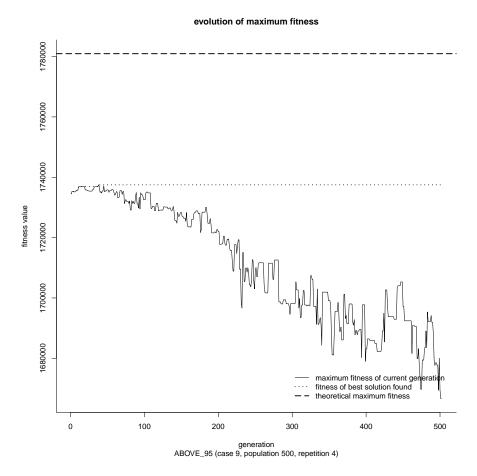


Fig. 2. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

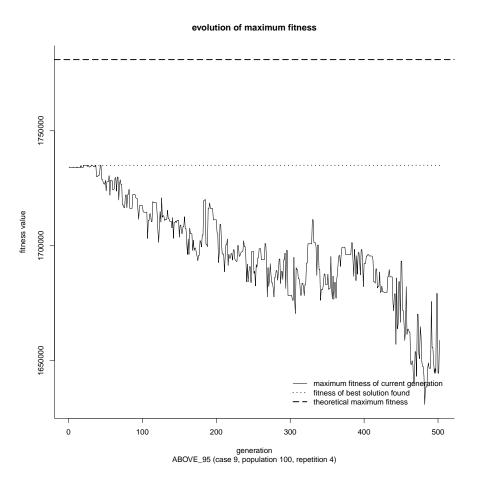


Fig. 3. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

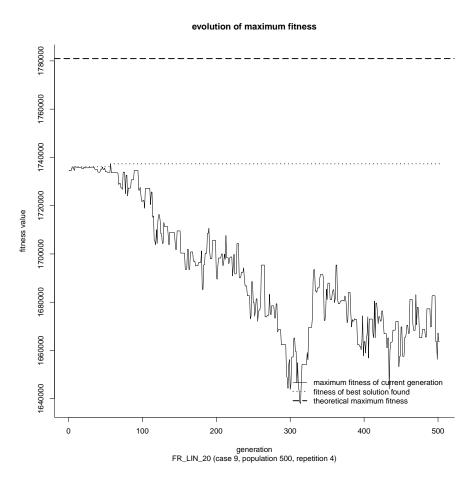


Fig. 4. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

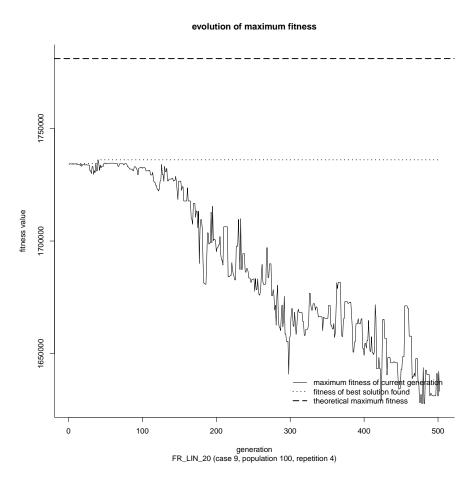


Fig. 5. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

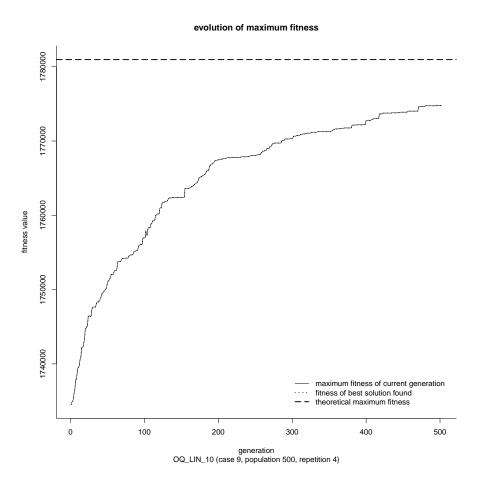
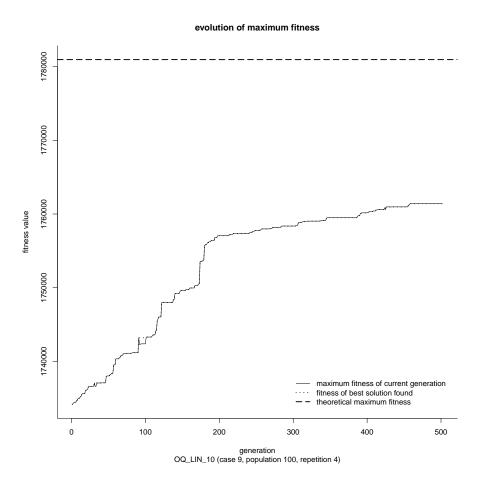



Fig. 6. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 7. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

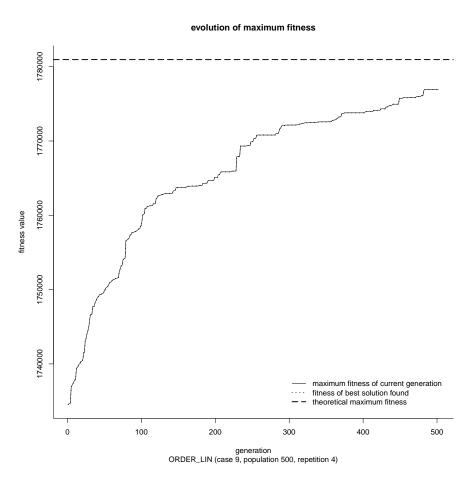


Fig. 8. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

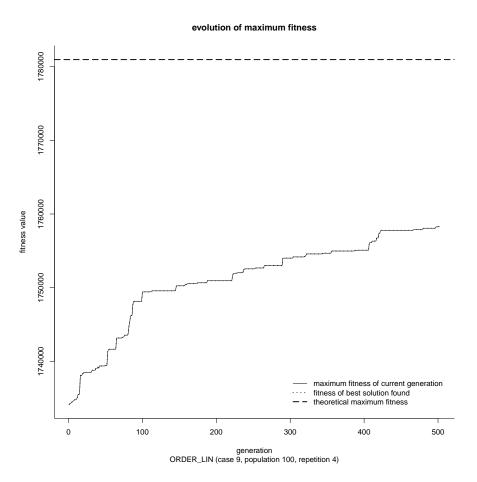


Fig. 9. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

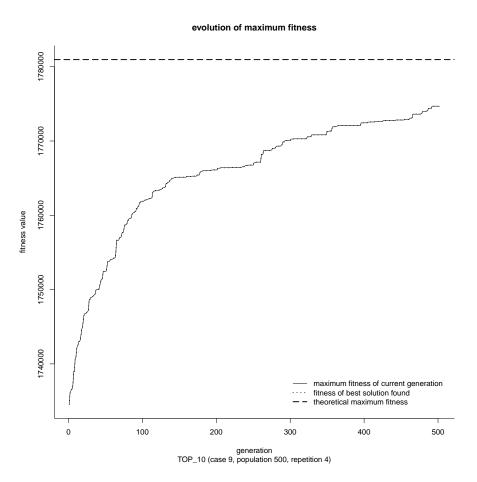


Fig. 10. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

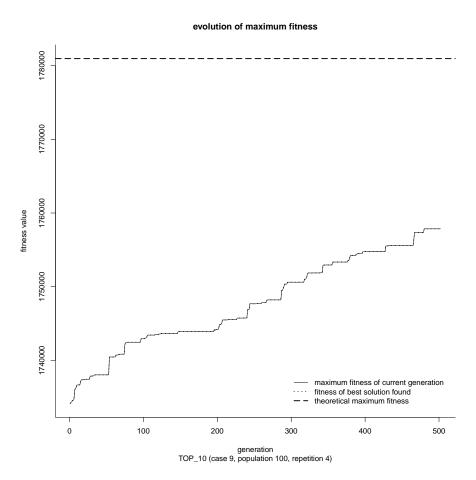


Fig. 11. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

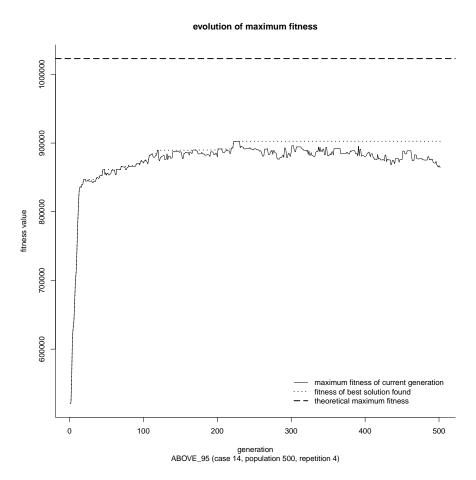


Fig. 12. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

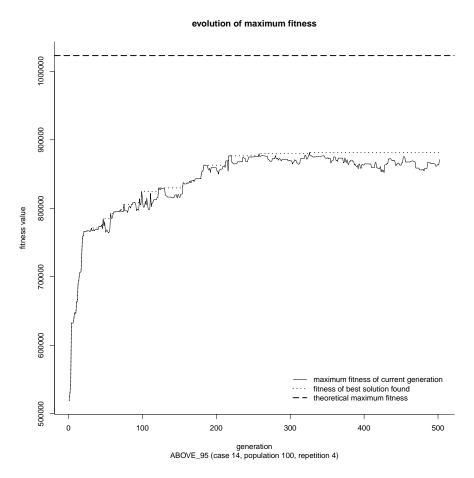


Fig. 13. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

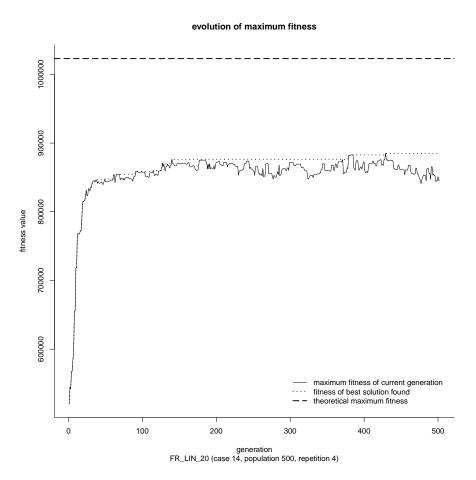


Fig. 14. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

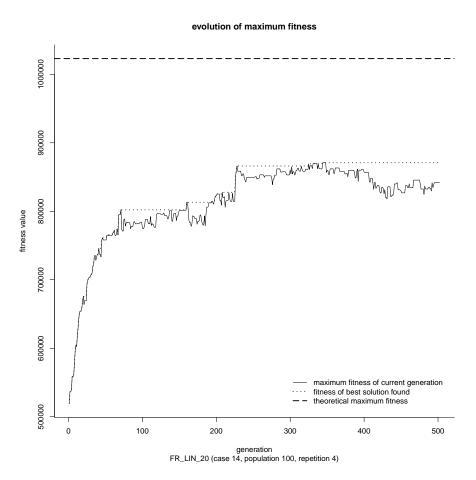


Fig. 15. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

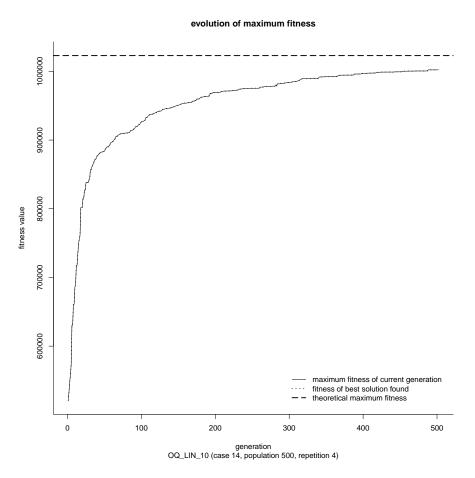


Fig. 16. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

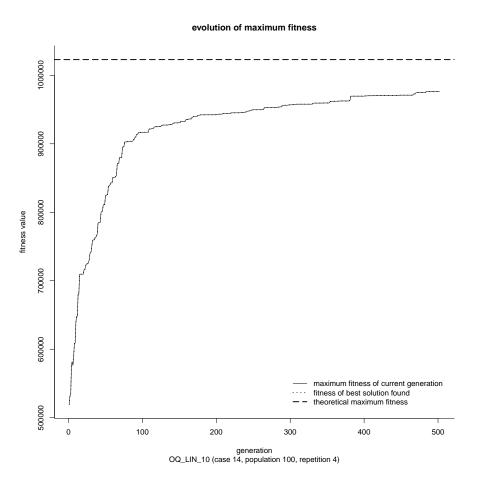


Fig. 17. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

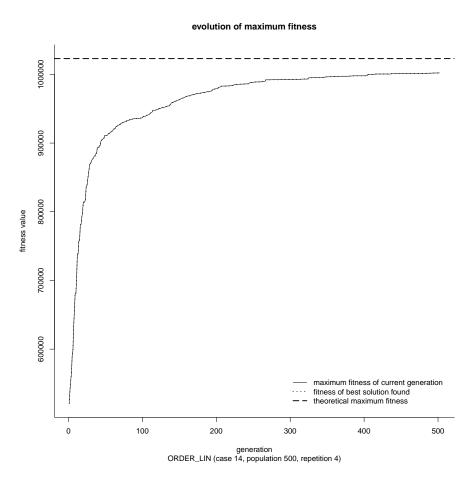


Fig. 18. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

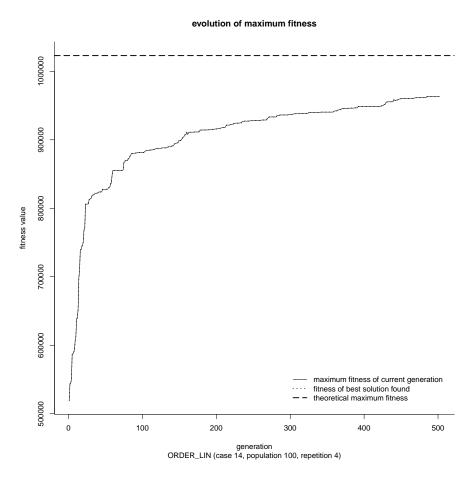


Fig. 19. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

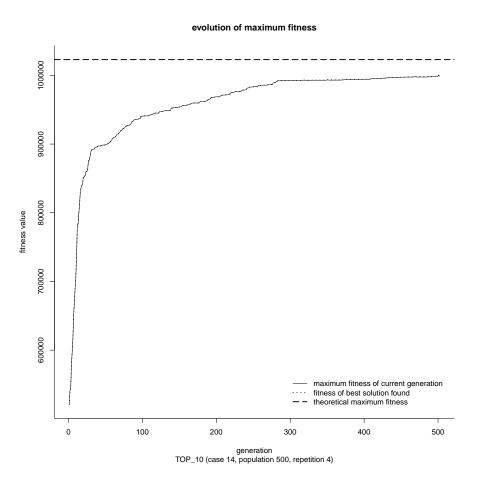


Fig. 20. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

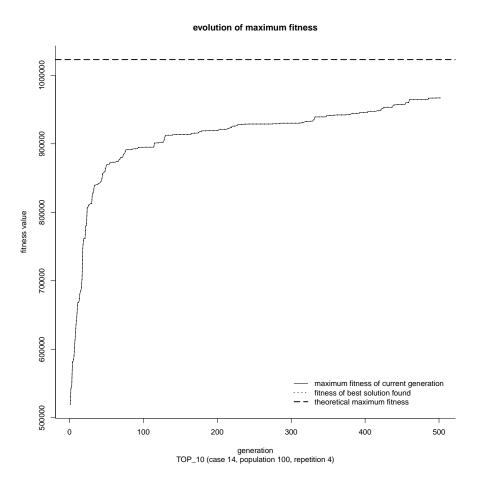


Fig. 21. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

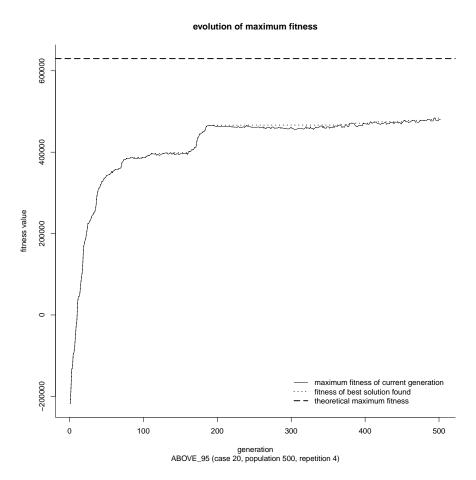


Fig. 22. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

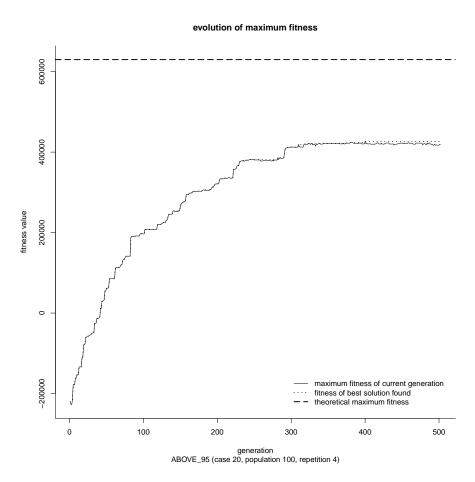


Fig. 23. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

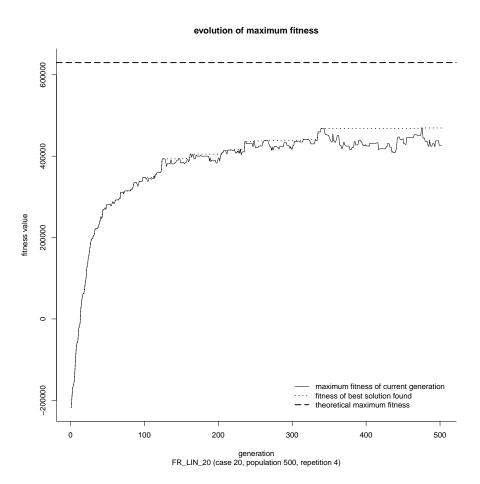


Fig. 24. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

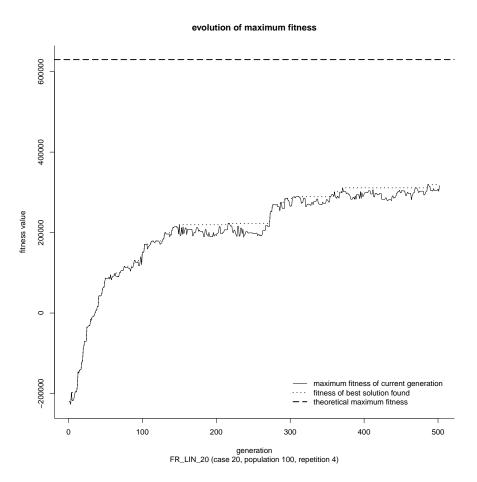


Fig. 25. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 26. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

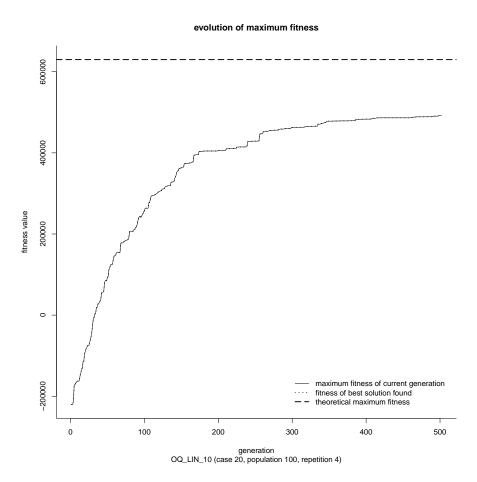


Fig. 27. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

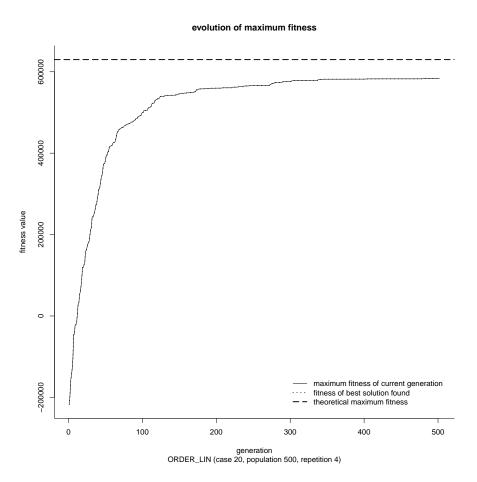


Fig. 28. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

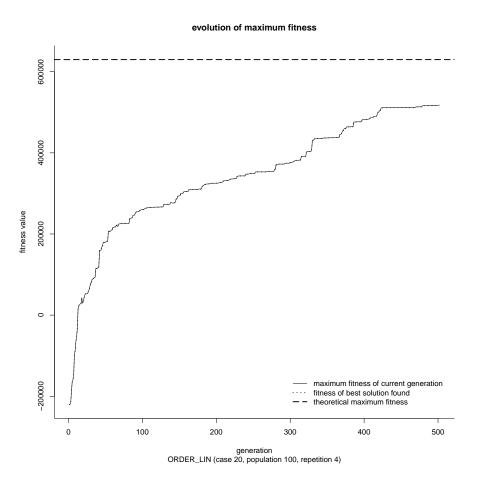


Fig. 29. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

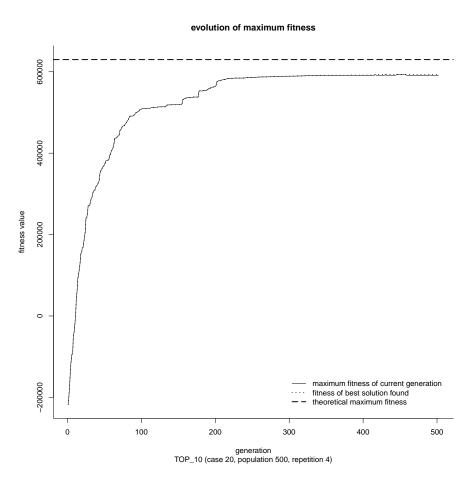


Fig. 30. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

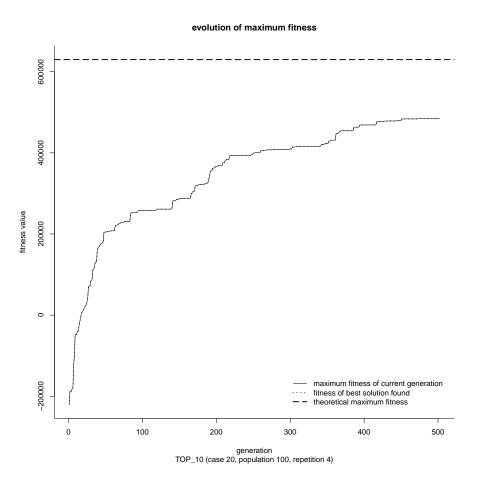


Fig. 31. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

2.3 Run 2

In contrast to the first run, the GA did not consider actual fitness values during the optimization in the second run. Rather, this information has been replaced in each iteration by a boolean value indicating if the fitness of the current best solution has been improved by an individual from this generation, with regards to all previous generations. The population size has then been used as a starting point by the GA to estimate and assign fitness values to the individuals of the generation, depending on the chosen fitness method. Configuration 0 with a population size of 500, as well as configuration 1 with a population size of 100, have been included in this experimental run. Although this run incorporated cases 1-47, the tables in this section only present the results for the cases 1-27, while the results for the remaining cases can be found in the next section (2.4).

 ${\bf Table~51.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ABOVE_70										
			fitness	value							
case #	pop	ulation	500	pop	opulation 100						
	avg	min	max	avg	min	max					
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
2	97.52%	97.47%	97.56%	97.40%	97.37%	97.48%					
3	99.30%	99.29%	99.32%	99.29%	99.29%	99.30%					
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
5	94.61%	94.51%	94.64%	94.26%	94.24%	94.28%					
6	96.24%	96.10%	96.37%	96.12%	96.09%	96.24%					
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
8	94.67%	94.63%	94.74%	94.48%	94.48%	94.49%					
9	97.42%	97.39%	97.45%	97.38%	97.37%	97.43%					
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
11	70.61%	69.95%	71.49%	69.98%	69.83%	70.12%					
12	99.11%	99.11%	99.11%	99.11%	99.10%	99.11%					
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
14	68.53%	66.91%	71.11%	64.89%	63.51%	68.60%					
15	96.91%	96.90%	96.91%	96.91%	96.88%	96.99%					
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
17	62.09%	60.83%	63.42%	60.48%	59.34%	61.29%					
18	96.25%	96.24%	96.27%	96.20%	96.18%	96.22%					
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
20	54.28%	53.59%	54.98%	44.41%	42.88%	47.47%					
21	54.83%	51.81%	58.52%	48.16%	45.75%	51.55%					
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
23	62.06%	59.65%	63.61%	58.13%	54.67%	63.93%					
24	59.59%	55.64%	64.04%	49.70%	48.00%	51.99%					
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%					
26	61.56%	57.40%	65.24%	53.30%	51.00%	55.29%					
27	55.31%	53.56%	57.31%	46.77%	42.80%	51.88%					

Table 52. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						AB	OVE_	70					
			_	pula					_	pula			
case #	≠ j	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
:	2	1	1	1	1	1	-	1	1	1	1	1	-
:	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
'	7	1	1	1	1	1	1	1	1	1	1	1	1
:	8	1	1	1	1	-	-	1	1	1	1	-	-
!	9	1	1	1	1	1	-	1	1	1	1	1	-
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	- 1	-	-	-	-	-	-	-	-	-	-	-	-
1:		1	1	1	1		-	1		1	1	1	-
13	u	1	1	1	1	1	1	1	1	1	1	1	1
1.	- 1	-	-	-	-	-	-	-	-	-	-	-	-
1.		1	1	1	1		-	1		1	1	1	-
1		1	1	1	1	1	1	1	1	1	1	1	1
1	- 1	-	-	-	-	-	-	-	-	-	-	-	-
13	- 1	1	1	1	1		-	1		1	1	1	
1:		1	1	1	1	1	1	1	1	1	1	1	1
20	- 1	-	-	-	-	-	-	-	-	-	-	-	-
2	- 1	-	-	-	-	-	-	-	-	-	-	-	-
2:	u	1	1	1	1	1	1	1	1	1	1	1	1
2	- 1	-	-	-	-	-	-	-	-	-	-	-	-
2.		-	-	-	-	-	-	-	-	-	-	-	-
2.		1	1	1	1	1	1	1	1	1	1	1	1
20	- 1	-	-	-	-	-	-	-	-	-	-	-	-
2	7	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 53.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	ABO	VE_	70	
	pop.	500	pop.	100
case #	avg. t	ime	avg. t	ime
1		3.17		0.20
2	5	3.13		9.65
3	5	52.08		8.97
4		2.97		0.19
5	5	50.19		9.07
6	5	52.55		8.98
1 2 3 4 5 6 7 8		2.93		0.19
8	4	19.90		9.03
9	4	19.85		8.99
10		3.02		0.19
11	4	19.23		8.87
12	4	18.81		8.90
13		3.04		0.18
14	-5	64.27		9.02
15	4	19.57		8.92
16		2.98		0.18
17	-5	60.48		9.18
18	4	19.56		8.91
19		2.99		0.19
20	4	17.39		8.99
21		66.75		9.15
22		3.00		0.19
23	4	19.10		9.32
24	6	64.79		9.54
25		3.02		0.19
26	4	17.21		8.97
27	5	8.27		9.27

 ${\bf Table~54.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ABOVE_80											
		fitness value										
case #	pop	oulation	500	pop	oulation	100						
"	avg	min	max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.53%	97.51%	97.54%	97.44%	97.38%	97.55%						
3	99.31%	99.31%	99.31%	99.30%	99.29%	99.31%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.66%	94.51%	94.79%	94.32%	94.21%	94.61%						
6	96.25%	96.18%	96.37%	96.18%	96.09%	96.28%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.66%	94.64%	94.70%	94.51%	94.48%	94.53%						
9	97.45%	97.39%	97.47%	97.38%	97.37%	97.42%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	73.61%	71.70%	74.76%	70.34%	68.79%	71.52%						
12	99.12%	99.11%	99.12%	99.11%	99.10%	99.12%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	77.46%	76.65%	79.22%	74.72%	70.80%	79.06%						
15	96.94%	96.90%	97.02%	96.88%	96.86%	96.89%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	69.74%	67.51%	71.36%	67.89%	65.35%	69.96%						
18	96.27%	96.24%	96.37%	96.21%	96.19%	96.23%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	64.66%	60.74%	71.91%	52.23%	49.68%	53.19%						
21	65.79%	63.12%	67.26%	54.52%	49.08%	57.81%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	69.91%	65.29%	73.18%	68.92%	66.12%	71.80%						
24	70.83%	68.39%	73.70%	61.67%	60.29%	63.36%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	69.02%	67.55%	69.61%	63.25%	61.11%	67.03%						
27	66.44%	65.27%	67.19%	59.29%	55.28%	62.60%						

Table 55. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						AB	OVE_	80					
			_	_	tion				_	pula			
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	-	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	-	-	-	-	-	-	-	-	-	-	-	-
	12	1	1	1	1	1		1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	132		-	-	-	-	188		-	-	-	-
	15	1	1	1	1	1		1	1	1	1	1	
	16	1	1	1	1	1	1	1	1	1	1	1	1
	17	-	-	-	-	-	-	-	-	-	-	-	-
	18	1	1	1	1		<u>-</u>	1	1	1	1	1	
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	-	-	-	-	-	-	-	-	-	-	-	-
	21	-	-	- 1	- 1	-	-	-	-	-	-	-	-
	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	-	-	-	-	-	-	-	-	-	-	-	-
	24	- 1			- 1	- 1	- 1	-	-	-	- 1	-	- 1
	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	-	-	-	-	-	-	-	-	-	-	-	-
	27	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 56.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	ABOVE_	80
		pop. 100
case #	avg. time	avg. time
1	3.04	0.19
2	49.32	8.93
3	48.95	8.88
4	3.03	0.19
2 3 4 5	50.44	8.96
	50.02	8.99
6 7	3.02	0.19
8	51.59	9.41
9	52.01	8.97
10	2.99	0.19
11	49.69	9.06
12	50.43	9.06
13	3.01	0.19
14	57.42	9.08
15	51.62	8.94
16	3.00	0.19
17	53.61	8.94
18	49.99	8.86
19	3.02	0.19
20	47.72	8.95
21	62.12	9.10
22	3.01	0.19
23	47.51	8.94
24	65.78	9.23
25	3.02	0.19
26	47.47	9.41
27	64.58	9.74

 ${\bf Table~57.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ABOVE_90									
			fitness	value						
case #	pop	ulation	500	pop	opulation 100					
	avg	min	max	avg	min	max				
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
2	97.58%	97.55%	97.66%	97.46%	97.42%	97.51%				
3	99.31%	99.30%	99.31%	99.30%	99.29%	99.30%				
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
5	94.69%	94.43%	95.02%	94.31%	94.20%	94.53%				
6	96.33%	96.30%	96.38%	96.23%	96.10%	96.37%				
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
8	94.71%	94.64%	94.79%	94.60%	94.53%	94.77%				
9	97.53%	97.48%	97.59%	97.43%	97.37%	97.51%				
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
11	84.62%	84.24%	84.96%	76.88%	75.01%	78.21%				
12	99.12%	99.11%	99.14%	99.12%	99.10%	99.15%				
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
14	85.53%	83.62%	87.07%	82.17%	80.61%	83.43%				
15	96.94%	96.90%	96.96%	96.91%	96.86%	97.01%				
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
17	86.44%	85.06%	88.98%	80.02%	76.73%	82.20%				
18	96.35%	96.27%	96.44%	96.22%	96.18%	96.34%				
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
20	74.31%	71.19%	76.59%	60.91%	57.39%	66.00%				
21	80.87%	80.05%	82.14%	65.89%	61.72%	69.32%				
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
23	78.95%	77.39%	80.37%	72.69%	68.07%	76.90%				
24	85.79%	84.95%	86.82%	78.57%	76.44%	80.66%				
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
26	79.38%	75.40%	81.39%	68.55%	65.76%	70.81%				
27	81.88%	80.76%	83.98%	65.32%	62.83%	69.60%				

Table 58. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ABOVE_90											
			pula						_	tion		
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	6	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	-	-	1	1	1	1	-	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	58	123	-	-	-	-	256	-	-	-	-	-
12	1	1	1	1	1		1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	25	40	125	-	-	-	88	170	-	-	-	-
15	1	1	1	1	1		1	1	1	1	1	
16	1	1	1	1	1	1	1	1	1	1	1	1
17	68	120	382		-	-	191	303		-	-	-
18	1	1	1	1	1		1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	460		-	-	-	-	-	-	-	-	-	-
21	260	396		-	-	-	-	-	-	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	1
23	126	195		-	-	-	420		-	-	-	-
24	89	131	260	-	-	-	319	480		-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	302	384		-	-	-	-	-	-	-	-	-
27	207	361	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 59.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	ABOVE_90									
		pop. 100								
case #	avg. time	avg. time								
1	2.96	0.18								
1 2 3 4 5 6 7 8	51.06	8.78								
3	49.04	8.98								
4	2.98	0.18								
5	57.91	8.91								
6	54.90	8.86								
7	2.95	0.18								
8	57.46	9.27								
9	52.77	9.17								
10	2.96	0.18								
11	56.81	8.90								
12	51.87	8.74								
13	2.97	0.19								
14	56.71	9.36								
15	63.42	9.25								
16	2.99	0.18								
17	59.14	9.05								
18	55.58	8.84								
19	2.98	0.19								
20	47.25	9.11								
21	72.89	9.47								
22	3.03	0.18								
23	46.01	8.98								
24	59.18	9.04								
25	2.98	0.20								
26	45.96	9.15								
27	64.62	9.62								

 ${\bf Table~60.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~{\rm Cases~1-27~in~our~experiments.}$

	ABOVE_95											
		fitness value										
case #	pop	oulation	500	pop	ulation	100						
"	avg	min	max	avg	min	max						
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
2	97.68%	97.64%	97.72%	97.54%	97.42%	97.67%						
3	99.33%	99.31%	99.34%	99.30%	99.29%	99.31%						
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
5	94.82%	94.43%	95.11%	94.46%	94.28%	94.83%						
6	96.38%	96.27%	96.46%	96.29%	96.16%	96.46%						
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
8	94.96%	94.84%	95.10%	94.79%	94.69%	94.99%						
9	97.53%	97.49%	97.59%	97.43%	97.38%	97.47%						
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
11	88.13%	87.20%	89.58%	80.57%	78.02%	83.69%						
12	99.14%	99.13%	99.17%	99.11%	99.11%	99.12%						
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
14	88.10%	86.75%	89.04%	84.17%	81.99%	86.69%						
15	97.03%	96.92%	97.17%	96.89%	96.86%	96.92%						
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
17	89.60%	88.33%	90.95%	82.09%	80.16%	84.57%						
18	96.43%	96.33%	96.54%	96.23%	96.20%	96.32%						
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
20	78.96%	77.63%	80.39%	66.63%	61.69%	70.89%						
21	85.23%	82.36%	88.67%	71.58%	66.61%	73.70%						
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
23	83.30%	82.50%	83.88%	76.26%	71.72%	80.47%						
24	89.10%	87.61%	90.80%	77.07%	75.15%	78.98%						
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%						
26	83.98%	79.07%	87.27%	72.38%	66.91%	78.74%						
27	86.42%	83.92%	89.50%	70.98%	66.79%	75.07%						

Table 61. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

						AB	OVE_	95					
				pula					_	pula			<u>.</u>
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	37	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	111	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	32	104	253	-	-	-	145	395	-	-	-	-
	12	1	1	1	1	1		1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	10	21	72	-	-	-	52	186	228	-	-	-
	15	1	1	1	1	1		1	1	1	1	1	
	16	1	1	1	1	1	1	1	1	1	1	1	2
	17	31	60	175	423		-	127	328		-	-	-
	18	1	1	1	1	1		1	1	1	1	1	-
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	264	469		-	-	-	-	-	-	-	-	-
	21	161	282	443	-	-	-	-	-	-	-	-	-
	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	80	195		-	-	-	379	500	-	-	-	-
1	24	77	122	207	272		-	382	-	-	-	-	-
	25	1	1	1	1	1	1	1	1	1	1	1	2
	26	141	245	416		-	-	262		-	-	-	-
	27	172	259	369	-	-	-	476	-	-	-	-	-

 $\textbf{Table 62.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	ABOVE_95									
	pop. 500									
case #	avg. time	avg. time								
1	3.19	0.20								
2	60.36	9.33								
3	56.20	9.12								
2 3 4	3.00	0.19								
5	70.69	9.66								
6 7	65.34	9.48								
7	3.19	0.20								
8	65.77	9.60								
9	57.38	9.03								
10	3.03	0.19								
11	68.86	9.29								
12	57.33	8.96								
13	3.00	0.19								
14	50.30	9.18								
15	74.36	9.16								
16	3.02	0.19								
17	60.22	9.25								
18	66.53	9.62								
19	3.19	0.20								
20	50.93	9.74								
21	56.94	9.18								
22	3.21	0.20								
23	47.53	9.40								
24	50.84	9.63								
25	3.22	0.21								
26	49.10	9.54								
27	54.67	9.67								

 ${\bf Table~63.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

			FR_LIN_	_5		
			fitness	value		
case #	pop	ulation	500	pop	ulation	100
	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	97.50%	97.42%	97.54%	97.43%	97.40%	97.46%
3	99.30%	99.30%	99.30%	99.29%	99.29%	99.30%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	94.63%	94.43%	94.90%	94.40%	94.28%	94.62%
6	96.23%	96.16%	96.32%	96.13%	96.07%	96.28%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	94.66%	94.53%	94.72%	94.51%	94.48%	94.54%
9	97.43%	97.39%	97.48%	97.40%	97.37%	97.50%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	71.35%	70.44%	72.27%	70.49%	69.95%	71.24%
12	99.11%	99.11%	99.11%	99.11%	99.10%	99.11%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	65.21%	63.21%	67.74%	60.29%	57.34%	65.16%
15	96.90%	96.89%	96.90%	96.88%	96.86%	96.89%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	61.73%	60.25%	62.85%	59.76%	58.35%	62.89%
18	96.25%	96.23%	96.30%	96.20%	96.19%	96.21%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	24.18%	19.66%	36.27%	6.63%	3.58%	9.30%
21	40.20%	39.03%	41.57%	38.13%	37.29%	41.47%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	41.68%	38.37%	50.68%	32.23%	28.15%	39.13%
24	36.23%	33.67%	37.75%	30.30%	28.54%	32.24%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	28.23%	25.38%	31.78%	16.82%	13.41%	19.14%
27	36.69%	33.57%	46.03%	31.77%	30.88%	32.45%

Table 64. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

FR_LIN_5												
			pula						pula			
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	-	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1		-	1	1	1			-
9	1	1	1	1	1		1	1	1	1	1	
10	1	1	1	1	1	1	1	1	1	1	1	1
11	-	-	-	-	-	-	-	-	-	-	-	-
12	1	1	1	1	1		1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	- 1	- 1	- 1	- 1	- 1	-	-	- 1	- 1	- 1	- 1	-
15	1	1	1	1	1		1	1	1	1	1	
16	1	1	1	1	1	1	1	1	1	1	1	1
17 18	- 1	- 1	1	1	1	- I	1	1	1	1	- 1	-
19	1	1 1	1	1	1	1	1	1	1	1	1 1	1
20	1	1	1	1	1	1	1	1	1	1	1	1
21	_	_	_	_	_	_		_	_	_	_	_
22	1	1	1	1	1	1	1	1	1	1	1	1
23						_						_
24	_	_	_	_	_	_	_	_	_	_	_	_
25	1	1	1	1	1	1	1	1	1	1	1	1
26	-	_	_	_	_	_	_	_	_	_	_	_
27	_	_	_	_	_	_	-	_	_	_	_	-

 $\textbf{Table 65.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.}$

	FR_LI	N_5	
	pop. 50		
case #	avg. tim	ie avg.	time
1	0.5		0.10
2	63.3	14	12.20
3	62.5	53	12.35
1 2 3 4 5	0.4	49	0.10
5	63.0	01	12.42
6	64.0	05	12.50
6 7 8	0.5	50	0.10
8	62.3	38	12.14
9	62.5	21	11.84
10	0.4	47	0.09
11	59.	78	11.82
12	59.9	97	11.89
13	0.5	50	0.10
14	63.3	39	12.55
15	62.3	10	12.50
16	0.5	50	0.10
17	61.8	88	11.86
18	59.4	48	11.84
19	0.4		0.09
20	60.3	38	11.92
21	59.4	48	11.90
22	0.4	46	0.09
23	60.4	43	11.97
24	60.6	63	11.85
25	0.4		0.09
26	61.6	63	12.15
27	60.0	03	11.81

 ${\bf Table~66.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~{\rm Cases~1-27~in~our~experiments.}$

			FR_LIN_	_7		
			fitness	value		
case #	pop	ulation	500	pop	oulation	100
	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	97.56%	97.54%	97.59%	97.44%	97.40%	97.49%
3	99.31%	99.30%	99.31%	99.29%	99.29%	99.29%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	94.46%	94.43%	94.52%	94.31%	94.28%	94.43%
6	96.29%	96.17%	96.44%	96.13%	96.09%	96.23%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	94.75%	94.64%	94.95%	94.62%	94.54%	94.66%
9	97.45%	97.39%	97.52%	97.43%	97.37%	97.48%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	75.12%	71.86%	76.99%	70.53%	69.95%	71.15%
12	99.12%	99.12%	99.13%	99.11%	99.10%	99.12%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	76.03%	72.42%	78.90%	72.50%	69.42%	74.66%
15	96.93%	96.90%	96.97%	96.88%	96.86%	96.89%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	68.32%	65.69%	70.43%	68.51%	63.79%	72.40%
18	96.25%	96.23%	96.28%	96.22%	96.18%	96.29%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	35.93%	30.28%	38.99%	25.98%	20.12%	31.95%
21	44.42%	40.50%	48.82%	41.40%	39.97%	43.89%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	56.66%	55.57%	57.98%	48.57%	42.19%	54.11%
24	54.25%	52.82%	55.45%	43.44%	40.27%	49.23%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	46.23%	41.55%	53.15%	37.54%	29.07%	43.47%
27	51.66%	47.39%	54.30%	41.53%	37.64%	49.80%

Table 67. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	FR_LIN_7												
			_	pula				population 100					
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	-	1	1	1	1	1	-
	3	1	1	1	1	1	-	1	1	1	1	1	-
	4	1	1	1	1	1	1	1	1	1	1	1	1
	5	1	1	1	1	-	-	1	1	1	1	-	-
	6	1	1	1	1	1	-	1	1	1	1	1	-
	7	1	1	1	1	1	1	1	1	1	1	1	1
	8	1	1	1	1	-	-	1	1	1	1	-	-
	9	1	1	1	1	1	-	1	1	1	1	1	-
	10	1	1	1	1	1	1	1	1	1	1	1	1
	11	339	-	-	-	-	-	-	-	-	-	-	-
	12	1	1	1	1	1	-	1	1	1	1	1	-
	13	1	1	1	1	1	1	1	1	1	1	1	1
	14	159	-	-	-	-	-	-	-	-	-	-	-
	15	1	1	1	1		-	1	1	1	1	1	-
1	16	1	1	1	1	1	1	1	1	1	1	1	1
1	17	-	-	-	-	-	-	-	-	-	-	-	-
	18	1	1	1	1		-	1	1	1	1	1	-
	19	1	1	1	1	1	1	1	1	1	1	1	1
	20	-	-	-	-	-	-	-	-	-	-	-	-
	21	-	-	-	-	-	-	-	-	-	-	-	-
1	22	1	1	1	1	1	1	1	1	1	1	1	1
	23	-	-	-	-	-	-	-	-	-	-	-	-
	24	-	-	-	-	-	-	-	-	-	-	-	-
	25	1	1	1	1	1	1	1	1	1	1	1	1
	26	-	-	-	-	-	-	-	-	-	-	-	-
	27	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 68.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	FR_LIN_	_7
	pop. 500	
case #	avg. time	avg. time
1	0.47	0.09
2	59.76	11.75
3	59.16	11.71
4	0.47	0.09
2 3 4 5	61.34	12.38
6	60.08	11.81
6 7	0.47	0.10
8	62.60	11.78
9	59.45	11.75
10	0.47	0.09
11	59.24	11.90
12	59.43	11.72
13	0.47	0.09
14	60.32	11.89
15	60.06	11.86
16	0.50	0.10
17	62.30	11.87
18	59.16	11.76
19	0.47	0.09
20	62.23	12.56
21	60.41	11.81
22	0.47	0.09
23	59.88	11.96
24	60.66	11.97
25	0.47	0.10
26	60.06	11.90
27	60.00	11.81

 ${\bf Table~69.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

		I	FR_LIN_	_10		
			fitness	value		
case #	pop	oulation	500	pop	oulation	100
"	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	97.58%	97.56%	97.60%	97.46%	97.41%	97.49%
3	99.31%	99.29%	99.33%	99.30%	99.29%	99.33%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	94.72%	94.67%	94.79%	94.41%	94.28%	94.53%
6	96.32%	96.20%	96.45%	96.23%	96.17%	96.29%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	94.78%	94.64%	94.83%	94.70%	94.64%	94.74%
9	97.48%	97.45%	97.51%	97.42%	97.38%	97.47%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	79.21%	78.03%	81.17%	73.92%	69.99%	78.55%
12	99.13%	99.11%	99.16%	99.11%	99.10%	99.12%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	82.87%	81.32%	84.26%	81.08%	79.91%	82.67%
15	96.94%	96.90%	97.01%	96.88%	96.86%	96.90%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	79.09%	77.77%	80.81%	76.79%	73.94%	79.76%
18	96.36%	96.28%	96.42%	96.26%	96.20%	96.33%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	46.81%	44.68%	47.74%	37.54%	35.34%	43.16%
21	57.27%	54.09%	59.57%	44.97%	41.83%	47.12%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	66.94%	64.17%	70.91%	64.34%	60.65%	68.55%
24	71.89%	68.58%	76.39%	61.97%	58.64%	68.81%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	61.43%	57.24%	65.30%	57.04%	48.13%	61.21%
27	65.81%	62.59%	68.68%	56.39%	53.95%	58.25%

Table 70. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

FR_LIN_10												
			pula							tion		
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	-	-	1	1	1	1	-	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	-	-	1	1	1	1		-
9	1	1	1	1	1		1	1	1	1	1	
10	1	1	1	1	1	1	1	1	1	1	1	1
11	141	458		-	-	-	422		-	-	-	-
12	1	1	1	1	1		1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	30	50		-	-	-	120	165		-	-	-
15	1	1	1	1	1		1	1	1	1	1	
16	1	1	1	1	1	1	1	1	1	1	1	1
17	174	451		-	-	-	357		-	-	-	-
18	1	1	1	1	1		1	1	1	1	1	
19	1	1	1	1	1	1	1	1	1	1	1	1
20 21	-	-	-	-	-	-	-	-	-	-	-	-
21 22	- 1	1	- 1	- 1	1	1	1	- 1	- 1	1	1	1
23	1	1	1	1	1	1	1	1	1	1	1	1
23	246	_	_	_	_	_		_	_	_	_	_
25	1	1	1	1	1	1	1	1	1	1	1	1
26	_	_		_ 1		1	_	_ 1				_
27	_	_	_	_	_	_	_	_	_	_	_	_
	I			-	-		Ι		_	-	_	-

 $\textbf{Table 71.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	FR_LIN_	_10
	pop. 500	pop. 100
case #	avg. time	avg. time
1	0.46	0.09
2	58.75	11.57
3	58.15	11.51
2 3 4	0.48	0.09
5	59.13	11.65
6	59.55	11.64
7	0.49	0.09
8	59.29	11.58
9	58.64	11.59
10	0.49	0.09
11	58.74	11.69
12	58.76	11.71
13	0.47	0.09
14	60.27	11.92
15	59.38	11.67
16	0.47	0.09
17	60.07	11.82
18	61.90	12.18
19	0.50	0.09
20	59.01	11.72
21	58.97	11.64
22	0.46	0.10
23	59.33	11.88
24	60.42	11.84
25	0.47	0.09
26	59.29	11.88
27	59.88	11.79

 ${\bf Table~72.} \ {\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

		I	FR_LIN_	_20		
			fitness	value		
case #	pop	ulation	500	pop	oulation	100
	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	97.65%	97.57%	97.73%	97.49%	97.46%	97.56%
3	99.34%	99.31%	99.36%	99.31%	99.29%	99.34%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	94.83%	94.76%	94.91%	94.47%	94.31%	94.63%
6	96.42%	96.30%	96.57%	96.25%	96.15%	96.40%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	94.95%	94.92%	95.00%	94.80%	94.65%	95.03%
9	97.60%	97.55%	97.66%	97.50%	97.39%	97.63%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	89.91%	88.50%	92.65%	81.56%	80.46%	83.16%
12	99.15%	99.13%	99.21%	99.12%	99.11%	99.15%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	87.17%	84.92%	91.04%	84.57%	82.42%	86.68%
15	97.02%	96.94%	97.08%	96.88%	96.86%	96.92%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	88.78%	87.01%	89.56%	82.61%	80.26%	84.09%
18	96.45%	96.38%	96.57%	96.31%	96.22%	96.39%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	69.15%	68.55%	70.76%	52.28%	44.05%	59.84%
21	78.84%	73.55%	82.04%	64.95%	60.49%	69.51%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	77.60%	72.79%	81.32%	74.52%	72.08%	77.64%
24	87.18%	85.59%	88.58%	77.89%	75.11%	80.99%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	77.33%	75.63%	79.66%	69.34%	64.98%	77.26%
27	83.65%	82.45%	85.48%	68.85%	64.99%	70.80%

Table 73. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	FR_LIN_20												
		_	pula				population 100						
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
	1	1	1	1	1	1	1	1	1	1	1	1	
:	2 1	1	1	1	1	-	1	1	1	1	1	-	
:	3 1	1	1	1	1	-	1	1	1	1	1	-	
	4 1	1	1	1	1	1	1	1	1	1	1	1	
.	5 1	1	1	1	-	-	1	1	1	1	-	-	
	$3 \mid 1$	1	1	1	1	-	1	1	1	1	1	-	
	7 1	1	1	1	1	1	1	1	1	1	1	1	
	8 1	1	1	1	-	-	1	1	1	1	65	-	
!	9 1	1	1	1	1	-	1	1	1	1	1	-	
1	$0 \mid 1$	1	1	1	1	1	1	1	1	1	1	1	
1	1 52	91	188	222	-	-	113	324	-	-	-	-	
1:	2 1	1	1	1	1	-	1	1	1	1	1	-	
13	3 1	1	1	1	1	1	1	1	1	1	1	2	
1.	16	21	96	354	-	-	46	65	246	-	-	-	
1.	5 1	1	1	1	1	-	1	1	1	1	1	-	
1	$ \hat{b} = 1$	1	1	1	1	1		1	1	1	1	1	
1	7 39	76	153	-	-	-	153	313	-	-	-	-	
1	8 1	1	1	1	1	-	1	1	1	1	1	-	
1:	9 1	1	1	1	1	1	1	1	1	1	1	1	
20		-	-	-	-	-	-	-	-	-	-	-	
2		347	-	-	-	-	-	-	-	-	-	-	
2		1	1	1	1	1		1	1	1	1	1	
2		376		-	-	-	326	-	-	-	-	- 7	
2		158	289	-	-	-	445	482		-	-	-	
2.		1	1	1	1	1		1	1	1	1	1	
2		-	-	-	-	-	447	-	-	-	-	-	
2	7 217	333	424	-	-	-	-	-	-	-	-	-	

Table 74. Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.

	FR_	LIN	20	
			pop.	
case #	avg.	time	avg. 1	time
1		0.56		0.11
2		59.74	1	11.62
3		59.47	1	11.76
2 3 4		0.48		0.10
5		59.67	1	11.70
6 7		60.71	1	11.62
7		0.47		0.10
8		60.72	1	11.65
9		59.67	1	11.74
10		0.49		0.10
11		59.22	1	11.74
12		57.80	1	11.57
13		0.47		0.10
14		58.77	1	11.94
15		58.68	1	11.51
16		0.47		0.09
17		59.39	1	11.79
18		61.50	1	12.05
19		0.50		0.10
20		62.59	1	12.40
21		61.34	1	12.33
22		0.47		0.09
23		59.08	1	12.02
24		59.88	1	12.33
25		0.50		0.10
26		62.80	1	12.46
27		59.77]	11.86

 ${\bf Table~75.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~{\rm Cases~1-27~in~our~experiments.}$

	OQ_LIN_5												
	fitness value												
case #	pop	ulation	pop	oulation	100								
	avg	min	max	avg	min	max							
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
2	99.69%	99.64%	99.71%	98.90%	98.83%	98.96%							
3	99.88%	99.83%	99.92%	99.58%	99.56%	99.60%							
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
5	98.78%	98.53%	99.15%	97.08%	96.74%	97.47%							
6	99.36%	99.18%	99.60%	98.12%	97.74%	98.43%							
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
8	99.17%	98.99%	99.40%	97.51%	97.32%	97.67%							
9	99.56%	99.49%	99.60%	98.58%	98.40%	98.82%							
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
11	96.61%	96.16%	96.95%	88.52%	86.90%	91.30%							
12	99.78%	99.74%	99.81%	99.40%	99.36%	99.47%							
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
14	97.53%	97.12%	97.89%	93.31%	91.76%	94.08%							
15	98.27%	98.13%	98.38%	97.21%	97.05%	97.38%							
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
17	96.89%	96.37%	97.34%	91.02%	89.38%	92.07%							
18	98.76%	98.50%	98.95%	97.31%	96.97%	97.82%							
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
20	92.95%	90.99%	94.35%	74.70%	68.89%	81.05%							
21	94.54%	92.89%	95.93%	81.65%	77.99%	83.47%							
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
23	95.11%	93.78%	95.96%	84.64%	80.76%	87.66%							
24	95.48%	94.59%	97.32%	85.32%	84.43%	85.76%							
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
26	94.27%	93.68%	95.24%	83.03%	81.04%	84.08%							
27	94.98%	94.01%	95.57%	81.87%	78.52%	86.61%							

Table 76. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	OQ_LIN_5												
		po	pula	tion	500			po	pula	tion	100		
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	-	1	1	1	1	1	-	
3	1	1	1	1	1	-	1	1	1	1	1	-	
4	1	1	1	1	1	1	1	1	1	1	1	1	
5	1	1	1	1	19	-	1	1	1	1	73	-	
6	1	1	1	1	1	-	1	1	1	1	1	-	
7	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	12	-	1	1	1	1	41	-	
9	1	1	1	1	1	-	1	1	1	1	1	-	
10	1	1	1	1	1	1	1	1	1	1	1	1	
11	16	35	60	115	326	-	53	121	329	478	-	-	
12	1	1	1	1	1	-	1	1	1	1	1	-	
13	1	1	1	1	1	1	1	1	1	1	1	1	
14	17	26	43	82	223	-	31	47	86	209	-	-	
15	1	1	1	1	1	-	1	1	1	1	1	-	
16	1	1	1	1	1	1	1	1	1	1	1	1	
17	28	42	65	119	321	-	70	119	199	389	-	-	
18	1	1	1	1	1	-	1	1	1	1	1	-	
19	1	1	1	1	1	1	1	1	1	1	1	1	
20	157	195	254	380	-	-	427	447	-	-	-	-	
21	82	113	164	245	459	-	346	447	-	-	-	-	
22	1	1	1	1	1	1	1	1	1	1	1	1	
23	148	181	222	321	442	-	267	348	433	-	-	-	
24	67	81	116	183	420	-	218	314	463	-	-	-	
25	1	1	1	1	1	1	1	1	1	1	1	1	
26	136	166	220	318	473	-	265	385	-	-	-	-	
27	91	119	171	253	448	-	316	398	428	-	-	-	

Table 77. Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.

	OQ	LIN	_5	
	pop.	500	pop.	100
case #	avg.	time	avg. t	ime
1		0.38		0.08
2	4	49.65		9.49
3	4	48.30		9.17
4		0.38		0.08
5	ļ	50.85		9.71
1 2 3 4 5 6 7 8	ļ	51.16		9.86
7		0.41		0.08
8	ļ	51.70		9.49
9	ļ	51.03		9.81
10		0.41		0.08
11	,	51.40		9.49
12	4	47.32		9.14
13		0.41		0.08
14	,	51.80		9.81
15	4	48.07		9.12
16		0.38		0.08
17		19.48		9.62
18	ļ	50.97		9.64
19		0.40		0.08
20	,	50.73		9.62
21	4	49.25		9.45
22		0.39		0.08
23		48.95		9.56
24	4	48.36		9.45
25		0.38		0.08
26		48.62		9.78
27	į	51.68		9.71

 ${\bf Table~78.~Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.}$

	OQ_LIN_7													
		fitness value												
case #	pop	ulation	500	500 population										
	avg	min	max	avg	max									
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
2	99.78%	99.72%	99.85%	99.01%	98.96%	99.09%								
3	99.93%	99.91%	99.94%	99.56%	99.45%	99.66%								
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
5	98.70%	98.51%	99.02%	97.07%	96.62%	97.31%								
6	99.39%	99.11%	99.60%	98.26%	98.08%	98.55%								
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
8	99.35%	99.23%	99.43%	97.56%	97.32%	97.80%								
9	99.68%	99.58%	99.76%	98.84%	98.71%	99.09%								
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
11	95.80%	94.88%	96.63%	90.08%	88.13%	91.53%								
12	99.80%	99.66%	99.89%	99.41%	99.36%	99.48%								
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
14	97.80%	97.52%	98.10%	94.11%	93.43%	94.66%								
15	98.27%	97.94%	98.54%	97.42%	97.27%	97.57%								
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
17	96.80%	96.14%	97.64%	90.79%	89.66%	92.19%								
18	98.84%	98.57%	99.05%	97.54%	97.25%	97.82%								
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
20	91.61%	88.91%	95.70%	77.04%	74.41%	81.96%								
21	95.47%	92.74%	96.97%	82.84%	80.93%	85.85%								
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
23	96.51%	95.79%	97.29%	88.33%	85.52%	91.61%								
24	95.60%	94.90%	96.46%	86.24%	81.88%	89.43%								
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
26	94.56%	93.21%	95.63%	83.43%	80.15%	87.38%								
27	95.70%	94.12%	96.88%	84.65%	82.25%	86.00%								

Table 79. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	OQ_LIN_7													
			ро	pula	tion	500		population 100						
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
	1	1	1	1	1	1	1	1	1	1	1	1	1	
	2	1	1	1	1	1	-	1	1	1	1	1	-	
	3	1	1	1	1	1	-	1	1	1	1	1	-	
	4	1	1	1	1	1	1	1	1	1	1	1	1	
	5	1	1	1	1	12	-	1	1	1	1	77	-	
	6	1	1	1	1	1	-	1	1	1	1	1	-	
	7	1	1	1	1	1	1	1	1	1	1	1	1	
	8	1	1	1	1	14	-	1	1	1	1	45	-	
	9	1	1	1	1	1	-	1	1	1	1	1	-	
	10	1	1	1	1	1	1	1	1	1	1	1	1	
	11	13	30	49	117	276	-	31	83	213	375	-	-	
	12	1	1	1	1	1	-	1	1	1	1	1	-	
	13	1	1	1	1	1	1	1	1	1	1	1	1	
	14	17	21	36	72	191	-	29	41	92	224	-	-	
!	15	1	1	1	1	1	-	1	1	1	1	1	-	
1	16	1	1	1	1	1	1	1	1	1	1	1	1	
	17	24	36	55	108	292	-	58	98	200	422	-	-	
1	18	1	1	1	1	1	-	1	1	1	1	1	-	
1	19	1	1	1	1	1	1	1	1	1	1	1	1	
	20	150	183	255	390	431		420	430		-	-	-	
1	21	83	114	162	269	398		259	379	441	-	-	-	
1	22	1	1	1	1	1	1	1	1	1	1	1	2	
	23	104	120	153	213	377		178	261	382	450	-	-	
1	24	66	92	125	192	449		215	290	401	-	-	-	
	25	1	1	1	1	1	1	1	1	1	1	1	1	
	26	111	143	182	291	481		258	396	360		-	-	
	27	87	121	180	247	416	-	250	340	487	-	-	-	

 ${\bf Table~80.}~{\rm Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.$

	OQ_LIN	_7
		pop. 100
case #	avg. time	avg. time
1	0.38	0.08
2	49.82	9.86
3	51.08	9.24
2 3 4 5 6 7 8	0.39	0.08
5	49.05	9.59
6	51.67	9.78
7	0.41	0.08
8	51.99	10.08
9	52.40	9.85
10	0.41	0.08
11	50.73	10.07
12	50.19	9.23
13	0.38	0.08
14	49.97	9.82
15	48.03	9.18
16	0.38	0.08
17	49.83	9.71
18	48.16	9.17
19	0.38	0.08
20	49.47	9.73
21	49.53	9.50
22	0.38	0.08
23	49.17	9.90
24	49.26	9.54
25	0.38	0.08
26	49.51	9.75
27	49.41	9.60

 ${\bf Table~81.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	OQ_LIN_10												
	fitness value												
case #	pop	ulation	500	pop	population 100								
	avg	min	max	avg	min	max							
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
2	99.78%	99.71%	99.88%	98.98%	98.89%	99.06%							
3	99.89%	99.87%	99.94%	99.59%	99.52%	99.64%							
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
5	98.77%	98.52%	98.96%	97.41%	97.07%	97.64%							
6	99.46%	99.37%	99.52%	98.27%	98.15%	98.43%							
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
8	99.32%	99.16%	99.42%	97.73%	97.63%	97.88%							
9	99.64%	99.60%	99.70%	98.83%	98.71%	98.90%							
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
11	96.32%	95.54%	97.32%	90.45%	88.62%	92.40%							
12	99.82%	99.78%	99.86%	99.36%	99.28%	99.43%							
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
14	97.74%	97.39%	98.61%	93.67%	93.00%	94.11%							
15	98.30%	98.12%	98.36%	97.46%	97.32%	97.60%							
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
17	97.27%	97.07%	97.44%	92.17%	90.39%	93.29%							
18	99.05%	99.00%	99.15%	97.64%	97.37%	98.00%							
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
20	92.25%	90.91%	93.22%	76.80%	74.04%	82.52%							
21	95.44%	93.77%	97.08%	81.11%	79.28%	82.46%							
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
23	96.44%	95.03%	97.71%	86.19%	83.32%	90.93%							
24	96.21%	95.49%	97.34%	85.85%	81.25%	88.83%							
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
26	95.67%	94.17%	96.47%	83.12%	80.06%	86.17%							
27	95.73%	94.72%	96.70%	84.55%	79.97%	89.89%							

Table 82. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

OQ_LIN_10													
	population 500							population 100					
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	-	1	1	1	1	1	-	
3	1	1	1	1	1	-	1	1	1	1	1	-	
4	1	1	1	1	1	1	1	1	1	1	1	2	
5	1	1	1	1	15	-	1	1	1	1	51	-	
6	1	1	1	1	1	-	1	1	1	1	1	-	
7	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	11	-	1	1	1	1	46	-	
9	1	1	1	1	1	-	1	1	1	1	1	-	
10	1	1	1	1	1	1	1	1	1	1	1	1	
11	12	25	52	115	335	-	37	98	205	346	-	-	
12	1	1	1	1	1	-	1	1	1	1	1	-	
13	1	1	1	1	1	1	1	1	1	1	1	1	
14	15	20	30	71	214	-	33	48	91	232	-	-	
15	1	1	1	1	1	-	1	1	1	1	1	-	
16	1	1	1	1	1	1	1	1	1	1	1	1	
17	26	37	56	115	240	-	50	98	153	326		-	
18	1	1	1	1	1	-	1	1	1	1	1	-	
19	1	1	1	1	1	1	1	1	1	1	1	1	
20	121	154	211	341		-	440	455		-	-	-	
21	71	101	144	238	412		276	394		-	-	-	
22	1	1	1	1	1	1	1	1	1	1	1	2	
23	78	99	144	205	402		219	294	324	424	-	-	
24	55	76	112	182	367		214	291	415		-	-	
25	1	1	1	1	1	1	1	1	1	1	1	1	
26	94	122	168	244	408		314	431	483		-	-	
27	99	133	174	266	417	-	274	362	345	-	-	-	

 $\textbf{Table 83.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	OQ_LIN_	_10
		pop. 100
case #	avg. time	avg. time
1	0.39	0.08
1 2 3 4 5 6 7 8	49.33	9.85
3	47.42	9.15
4	0.38	0.08
5	49.10	9.43
6	48.99	9.31
7	0.38	0.08
8	49.05	9.48
9	48.06	9.30
10	0.38	0.08
11	48.83	9.53
12	47.84	9.01
13	0.38	0.09
14	51.67	10.28
15	49.91	9.50
16	0.40	0.08
17	50.99	9.62
18	47.37	9.10
19	0.38	0.08
20	49.68	9.72
21	48.97	9.52
22	0.38	0.08
23	49.53	9.72
24	49.10	9.50
25	0.38	0.08
26	49.42	9.65
27	49.10	9.54

 ${\bf Table~84.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

	ORDER_LIN													
			fitness	value										
case #	pop	ulation	500	pop	pulation 100									
"	avg	min	max	avg	min	max								
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
2	99.76%	99.69%	99.86%	99.01%	98.88%	99.07%								
3	99.93%	99.86%	99.97%	99.63%	99.59%	99.69%								
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
5	98.96%	98.77%	99.41%	97.37%	97.18%	97.76%								
6	99.33%	99.17%	99.53%	98.19%	98.00%	98.45%								
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
8	99.36%	99.17%	99.51%	97.71%	97.63%	97.77%								
9	99.69%	99.60%	99.74%	98.90%	98.68%	99.08%								
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
11	96.35%	95.73%	97.15%	89.78%	88.49%	90.70%								
12	99.84%	99.82%	99.87%	99.45%	99.38%	99.56%								
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
14	97.99%	97.26%	98.71%	94.16%	93.79%	94.53%								
15	98.36%	98.12%	98.68%	97.43%	97.26%	97.56%								
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
17	97.41%	96.70%	97.91%	91.96%	90.71%	92.69%								
18	99.04%	98.87%	99.16%	97.66%	97.39%	97.80%								
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
20	92.50%	88.59%	94.23%	78.97%	77.53%	80.30%								
21	95.08%	93.69%	96.48%	84.87%	80.48%	87.69%								
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
23	97.32%	96.26%	98.26%	87.47%	85.29%	89.61%								
24	95.67%	93.75%	97.32%	87.47%	85.29%	89.56%								
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%								
26	95.72%	94.70%	96.74%	83.74%	81.34%	86.12%								
27	94.69%	94.12%	95.91%	82.89%	77.90%	86.55%								

Table 85. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	ORDER_LIN													
			po	pula	tion	500		population 100						
case	#	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
	1	1	1	1	1	1	1	1	1	1	1	1	1	
	2	1	1	1	1	1	-	1	1	1	1	1	-	
	3	1	1	1	1	1	-	1	1	1	1	1	-	
	4	1	1	1	1	1	1	1	1	1	1	1	1	
	5	1	1	1	1	10	-	1	1	1	1	42	-	
	6	1	1	1	1	1	-	1	1	1	1	1	-	
	7	1	1	1	1	1	1	1	1	1	1	1	1	
	8	1	1	1	1	9	-	1	1	1	1	32	-	
	9	1	1	1	1	1	-	1	1	1	1	1	-	
] 1	10	1	1	1	1	1	1	1	1	1	1	1	1	
] 1	11	12	29	52	110	319	-	31	74	155	445	-	-	
]]	12	1	1	1	1	1	-	1	1	1	1	1	-	
]	13	1	1	1	1	1	1	1	1	1	1	1	2	
] 1	14	14	19	27	63	184	-	30	45	83	203	-	-	
]	15	1	1	1	1	1	-	1	1	1	1	1	-	
]	16	1	1	1	1	1	1	1	1	1	1	1	1	
]	17	21	32	55	111	253	-	44	93	192	346	-	-	
]	18	1	1	1	1	1	-	1	1	1	1	1	-	
!	19	1	1	1	1	1	1	1	1	1	1	1	1	
1	20	126	159	241	306		-	384	457		-	-	-	
	21	72	103	149	260	365		275	386	437		-	-	
	22	1	1	1	1	1	1	1	1	1	1	1	1	
2	23	72	87	117	166	318	-	164	240	392	-	-	-	
1	24	53	77	111	180	392		158	261	390		-	-	
	25	1	1	1	1	1	1	1	1	1	1	1	1	
1	26	81	104	151	230	408		271	356	402		-	-	
2	27	86	114	169	272	458	-	288	335	409	-	-	-	

 $\textbf{Table 86.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

	ORDER_I	LIN
	pop. 500	
case #	avg. time	avg. time
1	0.39	0.08
2 3 4	49.74	9.61
3	51.04	9.48
4	0.39	0.08
5	51.93	9.90
6	52.27	9.85
7	0.41	0.08
8	50.39	9.74
9	50.53	9.94
10	0.41	0.08
11	51.77	9.57
12	47.69	9.10
13	0.38	0.08
14	51.40	10.23
15	50.97	9.50
16	0.41	0.08
17	53.69	9.72
18	47.52	9.17
19	0.38	0.08
20	49.70	9.78
21	50.66	9.69
22	0.41	0.08
23	53.37	9.99
24	49.74	10.16
25	0.41	0.08
26	53.05	10.11
27	51.07	9.54

 ${\bf Table~87.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

		О	RDER_I	OG		
			fitness	value		
case #	pop	ulation	500	pop	oulation	100
"	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	99.77%	99.65%	99.86%	99.00%	98.81%	99.09%
3	99.93%	99.89%	99.97%	99.65%	99.60%	99.68%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	98.90%	98.45%	99.29%	97.28%	96.97%	97.58%
6	99.41%	99.22%	99.66%	98.27%	97.85%	98.75%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	99.34%	99.14%	99.49%	97.60%	97.34%	97.84%
9	99.71%	99.60%	99.84%	98.97%	98.86%	99.09%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	95.71%	94.53%	96.89%	89.50%	88.09%	90.07%
12	99.80%	99.77%	99.82%	99.38%	99.30%	99.42%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	97.75%	97.31%	98.16%	94.06%	92.92%	95.69%
15	98.60%	98.22%	98.88%	97.43%	97.19%	97.80%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	97.23%	96.51%	98.27%	92.36%	90.67%	93.83%
18	99.12%	98.99%	99.31%	97.61%	97.41%	97.82%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	93.12%	90.00%	96.25%	81.73%	79.69%	83.14%
21	94.97%	93.58%	96.70%	83.86%	80.25%	88.03%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	97.18%	96.86%	97.80%	87.54%	84.75%	89.01%
24	96.44%	95.49%	97.19%	84.69%	81.91%	87.10%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	95.89%	94.51%	96.86%	85.40%	84.11%	86.40%
27	95.36%	93.66%	96.06%	84.42%	82.44%	86.63%

Table 88. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

					ORD	ER_I	OG					
			pula				population 100					
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	-	1	1	1	1	1	-
3	1	1	1	1	1	-	1	1	1	1	1	-
4	1	1	1	1	1	1	1	1	1	1	1	2
5	1	1	1	1	11	-	1	1	1	1	61	-
6	1	1	1	1	1	-	1	1	1	1	1	-
7	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	10	-	1	1	1	1	39	-
9	1	1	1	1	1	-	1	1	1	1	1	-
10	1	1	1	1	1	1	1	1	1	1	1	1
11	13	29	58	135	423	-	33	98	194	482	-	-
12	1	1	1	1	1	-	1	1	1	1	1	-
13	1	1	1	1	1	1	1	1	1	1	1	1
14	15	21	30	68	181	-	28	42	80	195	424	-
15	1	1	1	1	1	-	1	1	1	1	1	-
16	1	1	1	1	1	1	1	1	1	1	1	1
17	22	36	57	108	243	-	51	80	165	373	-	-
18	1	1	1	1	1	-	1	1	1	1	1	-
19	1	1	1	1	1	1	1	1	1	1	1	1
20	118	159	211	277	376	-	363	443	-	-	-	-
21	73	104	150	222	387	-	242	368	474	-	-	-
22	1	1	1	1	1	1	1	1	1	1	1	2
23	64	82	113	176	327	-	191	266	354	-	-	-
24	56	78	115	164	338	-	213	313	402	-	-	-
25	1	1	1	1	1	1	1	1	1	1	1	1
26	85	110	152	231	375	-	283	344	471	-	-	- 7
27	74	107	160	248	436	-	245	346	448	-	-	-

 ${\bf Table~89.}~{\rm Average~time~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.~The~average~time~is~displayed~as~seconds.$

	ORDER_L	OG
		pop. 100
case #	avg. time	avg. time
1	0.39	11.92
2	49.41	9.54
3	48.73	9.28
2 3 4	0.38	0.08
5	49.83	9.45
6	49.91	9.99
6 7	0.41	0.08
8	51.60	9.97
9	49.11	9.52
10	0.39	0.08
11	52.73	10.16
12	48.20	9.58
13	0.41	0.08
14	53.70	10.27
15	48.96	9.48
16	0.41	0.08
17	51.58	10.20
18	47.98	9.26
19	0.39	0.08
20	50.32	9.87
21	52.08	10.15
22	0.41	0.09
23	52.64	10.50
24	52.85	10.14
25	0.39	0.08
26	51.32	10.03
27	49.46	9.71

 ${\bf Table~90.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

			TOP_1	0		
			fitness	value		
case #	pop	ulation	ulation	100		
	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	99.61%	99.54%	99.71%	98.87%	98.58%	99.05%
3	99.88%	99.81%	99.91%	99.60%	99.53%	99.65%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	98.59%	98.41%	98.80%	96.98%	96.56%	97.57%
6	99.21%	98.93%	99.44%	97.97%	97.64%	98.19%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	99.15%	99.06%	99.26%	97.39%	96.75%	97.99%
9	99.67%	99.62%	99.82%	98.84%	98.71%	99.09%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	95.76%	94.03%	97.57%	89.03%	85.81%	90.83%
12	99.75%	99.69%	99.78%	99.38%	99.34%	99.44%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	97.25%	96.81%	98.24%	93.42%	93.07%	93.90%
15	98.24%	97.88%	98.46%	97.26%	97.15%	97.43%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	96.82%	95.99%	97.29%	91.21%	90.32%	92.59%
18	98.74%	98.60%	98.88%	97.25%	97.00%	97.60%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	90.98%	89.53%	93.51%	73.33%	68.84%	75.56%
21	94.39%	92.46%	96.28%	82.75%	74.48%	85.67%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	95.01%	93.03%	96.12%	84.37%	83.12%	86.56%
24	95.55%	93.20%	97.46%	83.15%	82.28%	83.78%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	92.84%	91.69%	94.44%	80.73%	79.97%	82.80%
27	93.88%	92.82%	94.65%	81.31%	80.09%	82.73%

Table 91. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	TOP_10												
			pula					_	_	tion			
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	2 1	1	1	1	1	-	1	1	1	1	1	-	
3	3 1	1	1	1	1	-	1	1	1	1	1	-	
4	1	1	1	1	1	1	1	1	1	1	1	2	
	1	1	1	1	8	-	1	1	1	1	78	-	
6	1	1	1	1	1	-	1	1	1	1	1	-	
7	1	1	1	1	1	1	1	1	1	1	1	1	
8	3 1	1	1	1	12	-	1	1	1	1	39	-	
9	1	1	1	1	1	-	1	1	1	1	1	-	
10	1	1	1	1	1	1	1	1	1	1	1	1	
11		21	42	97	318	-	23	110	232	386	-	-	
12		1	1	1	1	-	1	1	1	1	1	-	
13		1	1	1	1	1	1	1	1	1	1	2	
14		16	25	64	197	-	32	57	91	216	-	-	
15		1	1	1	1	-	1	1	1	1	1	-	
16		1	1	1	1	1	1	1	1	1	1	1	
17		29	45	90	266	-	55	99	190	387		-	
18		1	1	1	1	-	1	1	1	1	1	-	
19		1	1	1	1	1	1	1	1	1	1	2	
20		170	227	383		-	443		-	-	-	-	
21		108	166	269	367		273	325	471	-	-	-	
22		1	1	1	1	1	1	1	1	1	1	2	
23		80	101	175	402		236	322	406	-	-	-	
24		71	104	184	357		224	333		-	-	-	
25		1	1	1	1	1	1	1	1	1	1	1	
26		103	155	267		-	302	464		-	-	-	
27	75	99	148	244	-	-	306	431	-	-	-	-	

Table 92. Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds.

	TOP_1	0
		pop. 100
case #	avg. time	avg. time
1	0.74	0.09
2	51.59	9.75
3	52.17	9.89
1 2 3 4 5	0.97	0.10
5	52.31	9.54
6	50.35	9.38
6 7	0.74	0.08
8	49.61	9.37
9	50.41	9.37
10	0.74	0.08
11	49.89	9.45
12	51.78	9.53
13	0.96	0.11
14	52.35	9.54
15	50.17	9.29
16	0.80	0.09
17	50.40	9.52
18	51.97	9.47
19	0.77	0.09
20	49.70	9.51
21	52.14	9.97
22	0.96	0.10
23	51.54	10.11
24	53.26	9.58
25	0.85	0.09
26	49.34	9.53
27	50.80	9.46

 ${\bf Table~93.} \ {\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

			TOP_2	0					
			fitness	value					
case #	pop	ulation	500	pop	population 100				
	avg	min	max	avg	min	max			
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
2	99.62%	99.50%	99.82%	98.80%	98.67%	99.05%			
3	99.89%	99.82%	99.93%	99.58%	99.50%	99.67%			
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
5	98.63%	98.14%	99.01%	97.02%	96.36%	97.43%			
6	99.24%	99.00%	99.33%	97.96%	97.69%	98.32%			
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
8	99.12%	98.96%	99.37%	97.33%	96.56%	97.75%			
9	99.64%	99.57%	99.75%	98.58%	98.33%	98.70%			
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
11	95.61%	92.98%	97.28%	88.42%	85.57%	90.76%			
12	99.75%	99.64%	99.82%	99.35%	99.26%	99.43%			
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
14	97.20%	96.69%	97.75%	93.42%	92.72%	94.65%			
15	98.11%	97.86%	98.52%	97.32%	97.19%	97.51%			
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
17	96.71%	96.04%	97.29%	90.66%	89.54%	91.80%			
18	98.31%	97.67%	98.55%	97.35%	97.13%	97.54%			
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
20	91.34%	87.01%	93.76%	74.68%	71.34%	80.07%			
21	93.27%	91.67%	96.10%	81.56%	77.65%	85.46%			
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
23	95.31%	93.20%	97.06%	83.97%	80.21%	86.21%			
24	95.24%	94.32%	96.54%	84.86%	81.94%	88.57%			
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
26	93.13%	91.62%	95.90%	80.88%	78.17%	84.23%			
27	93.49%	91.09%	95.56%	81.01%	77.42%	84.01%			

Table 94. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	TOP_20												
			pulat				population 100						
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	-	1	1	1	1	1	-	
3	1	1	1	1	1	-	1	1	1	1	1	-	
4	1	1	1	1	1	1	1	1	1	1	1	1	
5	1	1	1	1	14	-	1	1	1	1	63	-	
6	1	1	1	1	1	-	1	1	1	1	1	-	
7	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	15	-	1	1	1	1	53	-	
9	1	1	1	1	1	-	1	1	1	1	1	-	
10	1	1	1	1	1	1	1	1	1	1	1	1	
11	15	33	64	140	334	-	42	127	306	433	-	-	
12	1	1	1	1	1	-	1	1	1	1	1	-	
13	1	1	1	1	1	1	1	1	1	1	1	1	
14	17	23	34	73	195	-	36	48	86	249	-	-	
15	1	1	1	1	1	-	1	1	1	1	1	-	
16	1	1	1	1	1	1	1	1	1	1	1	1	
17	25	37	60	117	304	-	66	109	198	435		-	
18	1	1	1	1	1	-	1	1	1	1	1	-	
19	1	1	1	1	1	1	1	1	1	1	1	1	
20	139	175	238	303		-	406	465		-	-	-	
21	89	118	176	309	359		319	373	494	-	-	-	
22	1	1	1	1	1	1	1	1	1	1	1	1	
23	118	139	182	254	404		222	349	406		-	-	
24	58	72	107	204	416		240	316	424		-	-	
25	1	1	1	1	1	1	1	1	1	1	1	1	
26	103	133	204	307	344		318	414		-	-	-	
27	92	121	162	287	383	-	305	406	-	-	-	-	

 $\textbf{Table 95.} \ \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments. The average time is displayed as seconds. }$

	TOP_2	0
		pop. 100
case #	avg. time	avg. time
1	1.17181	0.09678
2	55.39155	9.65788
3	58.41568	9.34746
4	1.29273	0.11463
5	53.62986	9.46933
6	62.8159	9.72548
7	1.26882	0.09819
8	54.31588	9.4995
9	62.44217	9.41975
10	1.22864	0.09791
11	56.0119	9.98489
12	65.05239	9.93499
13	1.41368	0.12318
14	56.85694	9.87275
15	62.97401	9.60114
16	1.39881	0.11682
17	57.41184	9.98721
18	68.34424	9.60264
19	1.27998	0.10432
20	55.72967	9.98815
21	62.27662	9.70404
22	1.42406	0.11684
23	51.1816	9.461
24	60.23342	9.47425
25	1.36946	0.11107
26	53.68729	9.71577
27	59.28932	9.54482

 ${\bf Table~96.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~1-27~in~our~experiments.$

			TOP_3	0		
			fitness	value		
case #	pop	ulation	ulation	100		
"	avg	min	max	avg	min	max
1	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	99.49%	99.35%	99.60%	98.54%	98.40%	98.70%
3	99.80%	99.74%	99.84%	99.50%	99.46%	99.55%
4	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	98.28%	97.85%	98.47%	96.46%	96.26%	96.81%
6	99.08%	98.83%	99.22%	97.74%	97.53%	97.91%
7	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
8	98.60%	98.41%	98.67%	96.93%	96.78%	97.11%
9	99.34%	99.24%	99.55%	98.52%	98.26%	98.79%
10	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
11	94.51%	93.66%	96.24%	86.49%	85.17%	88.03%
12	99.69%	99.60%	99.82%	99.29%	99.22%	99.40%
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
14	91.97%	84.78%	96.13%	91.85%	91.15%	92.60%
15	97.94%	97.78%	98.06%	97.17%	97.11%	97.23%
16	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	95.67%	95.05%	96.24%	88.88%	87.38%	90.82%
18	98.41%	98.02%	98.80%	96.99%	96.70%	97.20%
19	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
20	66.13%	54.73%	90.70%	64.93%	58.14%	69.87%
21	90.92%	89.17%	92.64%	76.89%	71.73%	80.05%
22	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
23	28.63%	23.71%	34.49%	83.32%	81.69%	85.59%
24	94.90%	92.69%	95.94%	81.50%	79.38%	83.36%
25	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
26	40.15%	33.08%	45.14%	76.15%	74.01%	81.43%
27	91.83%	90.33%	93.21%	75.36%	71.35%	77.89%

Table 97. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 1-27 in our experiments.

	TOP_30												
		po	pula	tion	500		population 100						
case #	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	-	1	1	1	1	1	-	
3	1	1	1	1	1	-	1	1	1	1	1	-	
4	1	1	1	1	1	1	1	1	1	1	1	1	
5	1	1	1	1	23	-	1	1	1	1	80	-	
6	1	1	1	1	1	-	1	1	1	1	1	-	
7	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	19	-	1	1	1	1	57	-	
9	1	1	1	1	1	-	1	1	1	1	1	-	
10	1	1	1	1	1	1	1	1	1	1	1	1	
11	27	53	92	183	269	-	57	166	425	-	-	-	
12	1	1	1	1	1	-	1	1	1	1	1	-	
13	1	1	1	1	1	1	1	1	1	1	1	1	
14	26	36	59	135	330	-	42	61	123	322	-	-	
15	1	1	1	1	1	-	1	1	1	1	1	-	
16	1	1	1	1	1	1	1	1	1	1	1	1	
17	37	56	92	173	422		84	153	285	416		-	
18	1	1	1	1	1		1	1	1	1	1		
19	1	1	1	1	1	1	1	1	1	1	1	1	
20	176	213	274	438		-	-	-	-	-	-	-	
21	121	184	280	420		-	389	496		-	-	-	
22	1	1	1	1	1	1	1	1	1	1	1	1	
23	-	-	-		-	-	262	383		-	-	-	
24	102	131	170	255	432		364	436		-	-	-	
25	1	1	1	1	1	1	1	1	1	1	1	1	
26	-	-	-	-	-	-	427	477	-	-	-	-	
27	130	180	245	365	-	-	467	-	-	-	-	-	

 $\textbf{Table 98.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 1-27 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

TOP_30		
	pop. 500	pop. 100
case #	avg. time	avg. time
1	1.66	0.11
1 2 3 4	64.71	9.42
3	81.17	9.53
4	1.86	0.14
5	63.24	9.53
6	77.64	10.09
5 6 7 8	1.78	0.12
8	64.47	9.62
9	79.50	9.62
10	1.70	0.11
11	62.37	9.35
12	79.87	9.52
13	1.88	0.14
14	58.28	9.39
15	81.19	9.78
16	1.85	0.14
17	65.46	9.58
18	79.24	9.64
19	1.77	0.12
20	51.90	9.35
21	76.40	9.54
22	1.92	0.14
23	49.60	9.37
24	75.33	9.93
25	1.93	0.14
26	54.55	9.53
27	78.37	10.00

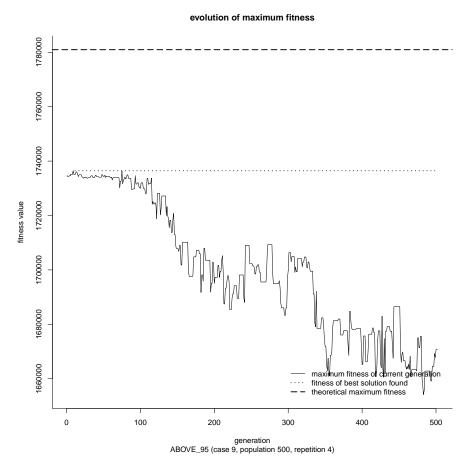


Fig. 32. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

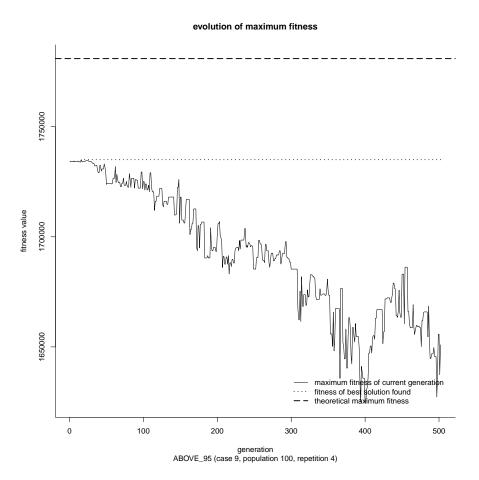


Fig. 33. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

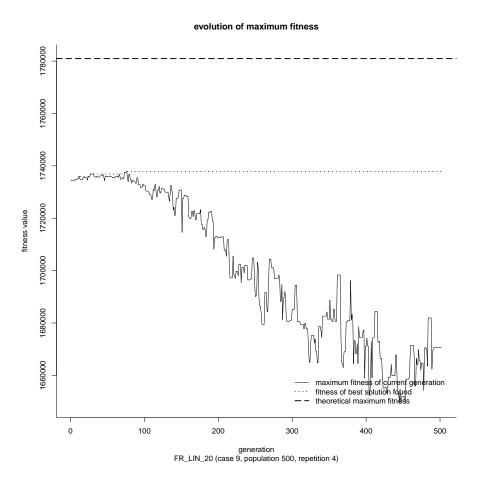


Fig. 34. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

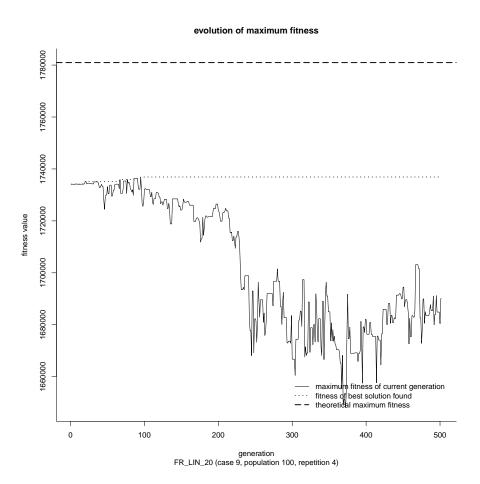


Fig. 35. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

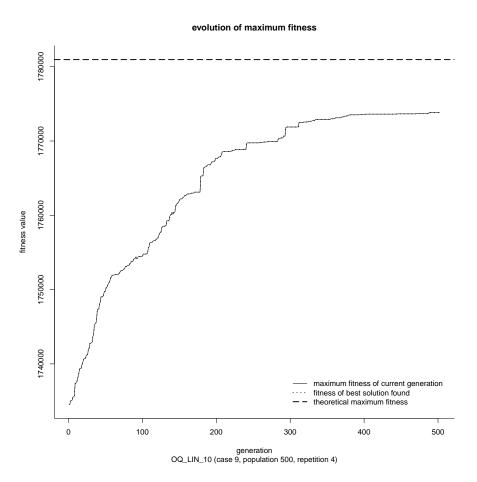


Fig. 36. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

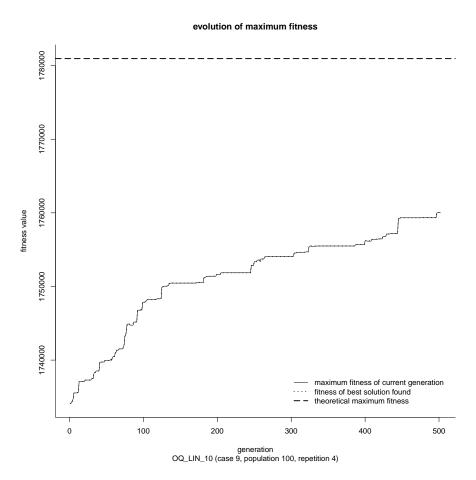


Fig. 37. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

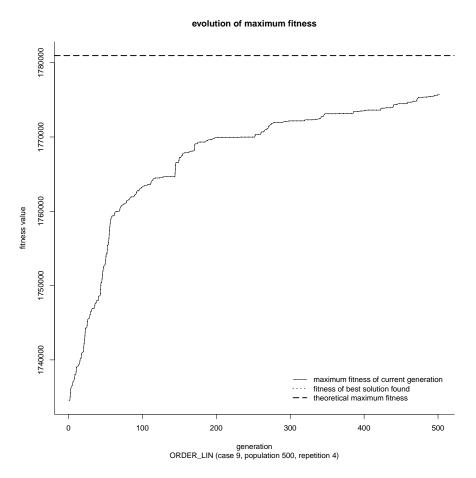


Fig. 38. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

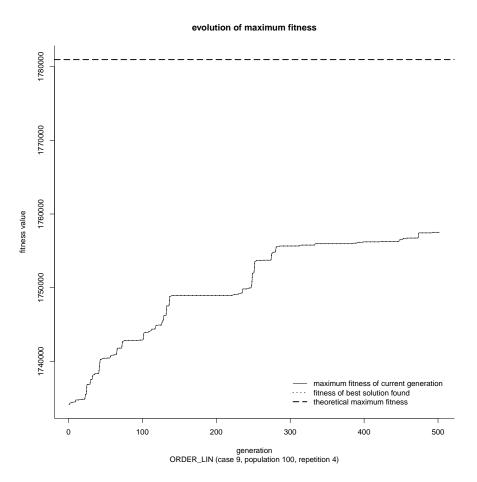


Fig. 39. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

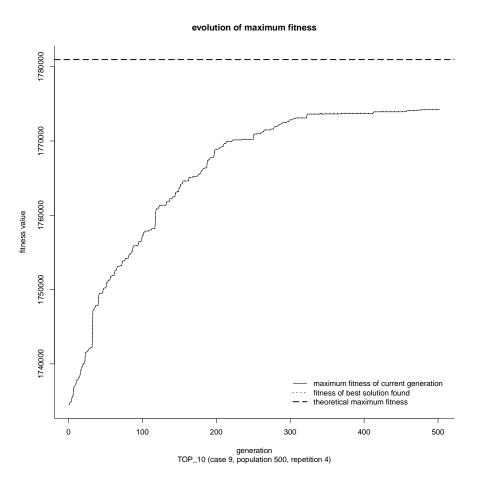


Fig. 40. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 41. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

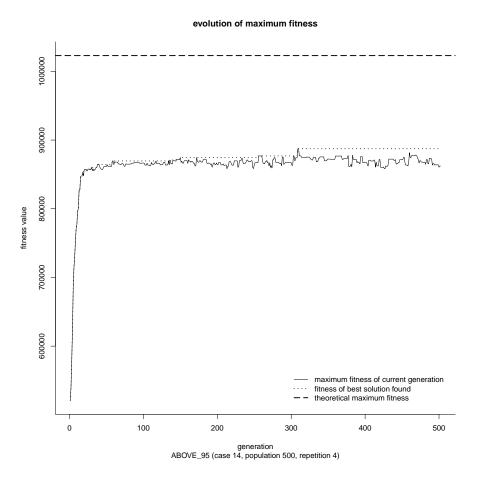


Fig. 42. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

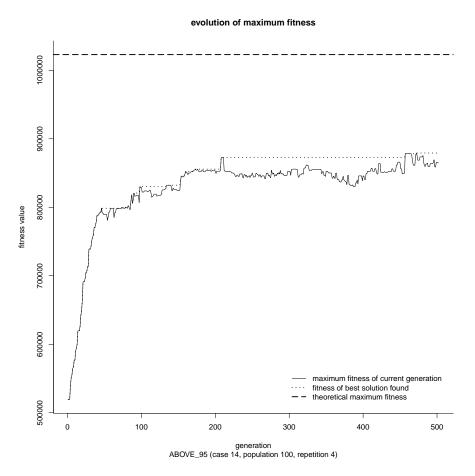


Fig. 43. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

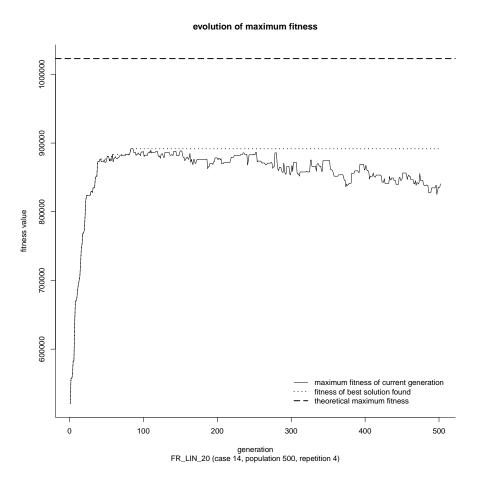


Fig. 44. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

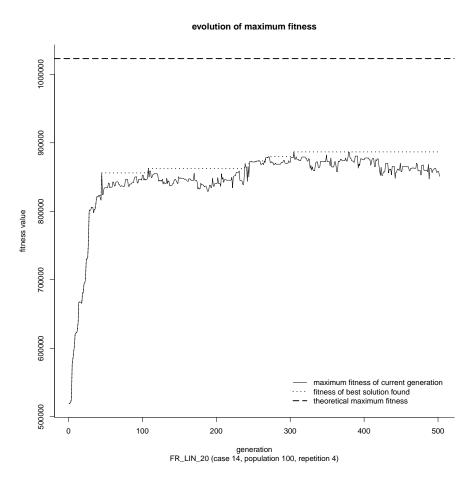


Fig. 45. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

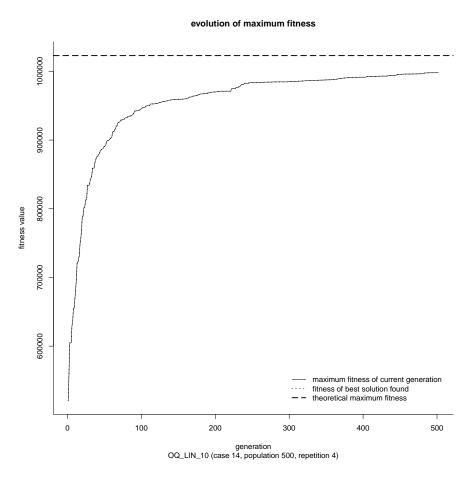


Fig. 46. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

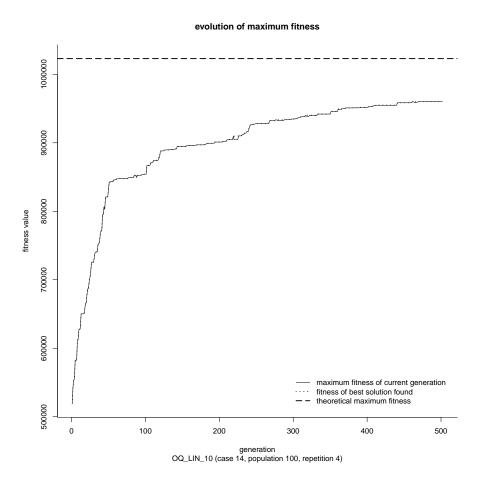


Fig. 47. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

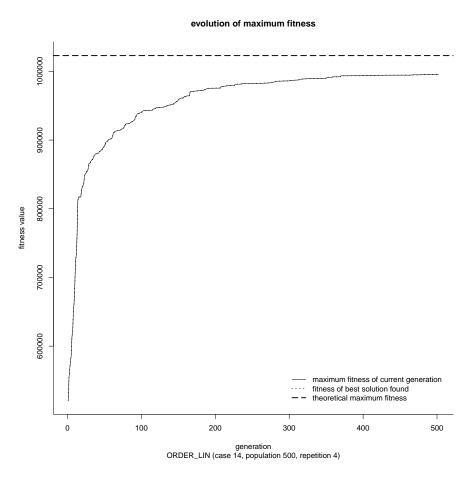


Fig. 48. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

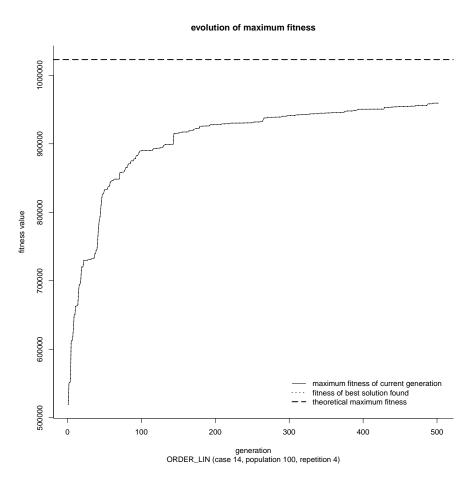


Fig. 49. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 50. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

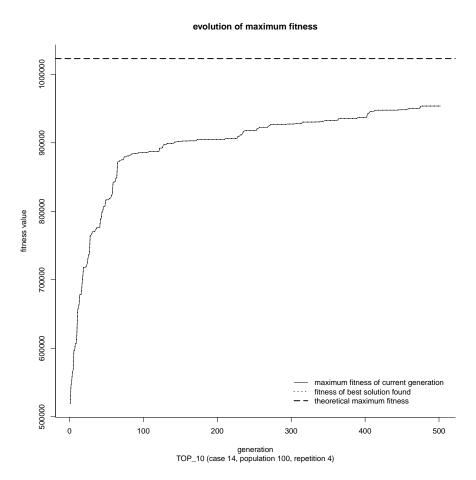


Fig. 51. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

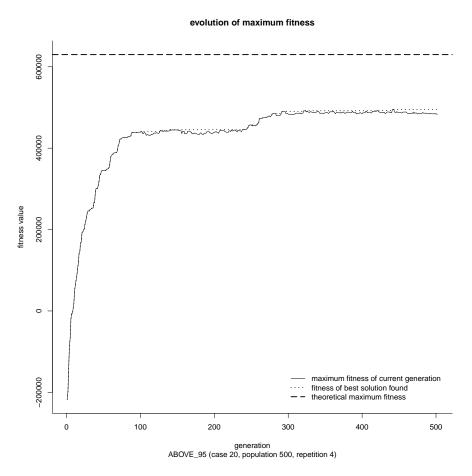


Fig. 52. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

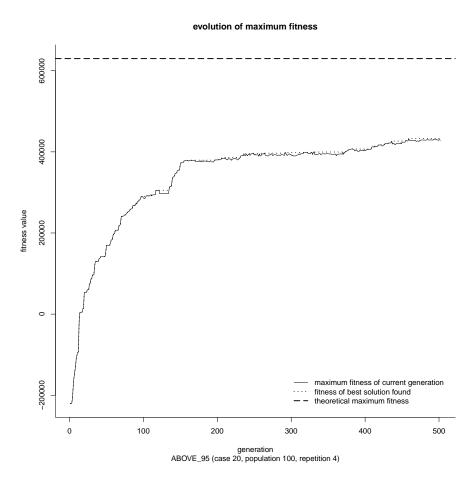


Fig. 53. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

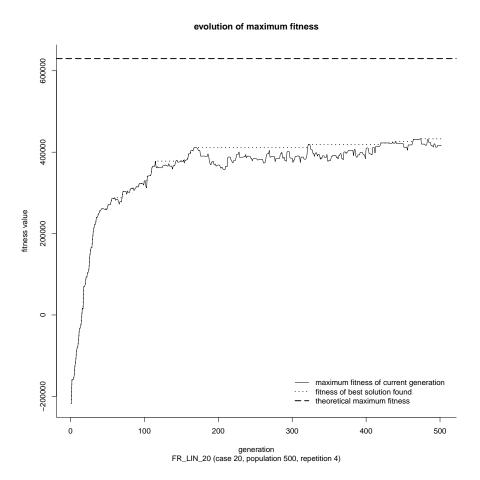


Fig. 54. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

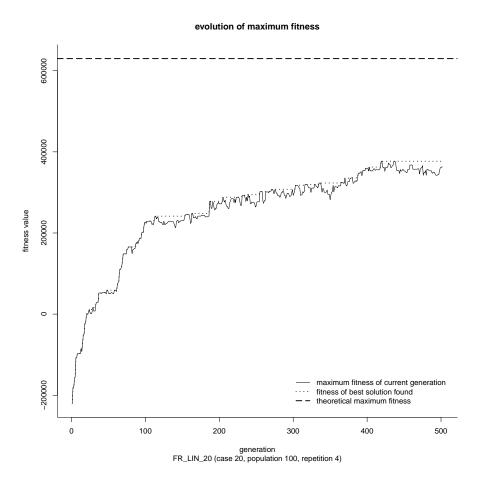


Fig. 55. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 56. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

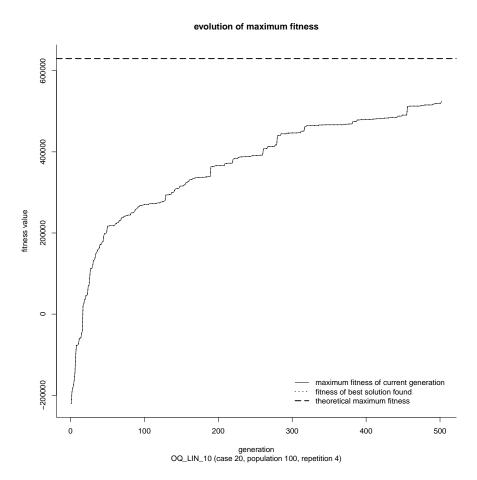


Fig. 57. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

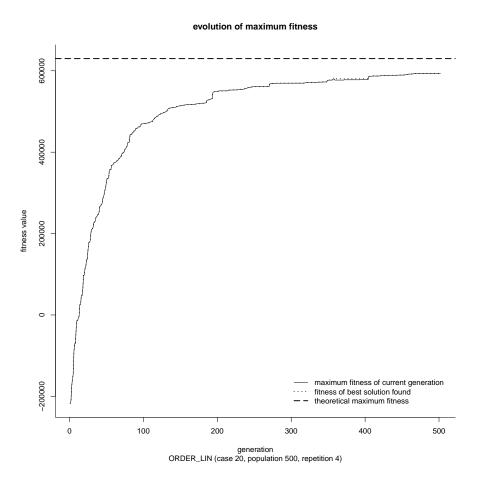


Fig. 58. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

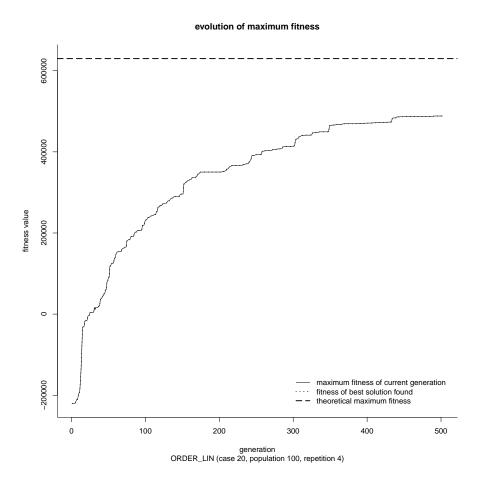


Fig. 59. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

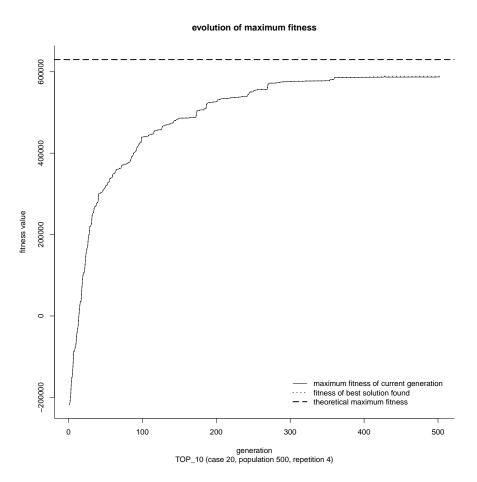


Fig. 60. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

Fig. 61. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

2.4 Run 3

Compared to the second run (compare 2.3), this run included only the cases 28-47, the maximum iterations have been set to 1500 and only configuration 1 with a population size of 100 has been tested. The tables presented in this section compare the results of the included cases with those achieved during the second run. Additionally, the GA facilitated knowledge about the best solution in each generation. Opposed to run 2, this allowed the GA to assign the highest estimated fitness value in each generation to the actual best solution, and thereby increase its likelihood for selection for those methods that do not disclose the actual order of the individuals.

Table 99. Reached percentages of the optimizations of synthetic datasets for Cases 28-47 in our experiments.

				ABO	VE_70								
		fitness value											
[]	pop	ulation	500			populat	ion 100)					
case #	500	generat	tions	500	genera	tions	1500	genera	tions				
	avg	min	max	avg	min	max	avg	min	max				
28	55.01%	53.36%	58.15%	47.73%	45.89%	49.20%	88.27%	84.36%	92.34%				
29	54.72%	51.51%	59.80%	46.47%	44.24%	50.20%	86.60%	83.91%	89.74%				
30	53.42%	51.08%	57.95%	43.29%	40.88%	45.58%	84.76%	82.50%	87.63%				
31	51.27%	49.04%	53.53%	44.35%	40.00%	49.66%	84.20%	80.64%	88.20%				
32	51.28%	49.85%	53.55%	44.43%	40.24%	47.97%	85.00%	81.17%	88.88%				
33	53.34%	51.23%	55.91%	44.32%	41.44%	47.74%	85.10%	83.47%	86.43%				
34	51.98%	49.33%	54.34%	47.50%	45.43%	50.66%	84.79%	82.89%	87.16%				
35	52.70%	50.44%	55.67%	47.25%	44.51%	49.95%	84.46%	80.27%	88.24%				
36	49.15%	45.19%	51.49%	44.45%	40.96%	47.68%	85.72%	82.82%	89.05%				
37	50.24%	48.84%	52.12%	43.18%	40.19%	44.85%	82.78%	80.87%	84.27%				
38	37.80%	36.25%	39.74%	33.32%	31.33%	35.93%	70.89%	68.40%	74.67%				
39	39.47%	36.69%	41.34%	34.21%	31.89%	37.23%	71.60%	70.21%	73.42%				
40	40.07%	38.36%	41.77%	34.31%	32.31%	36.61%	74.67%	70.94%	76.26%				
41	39.77%	38.28%	41.61%	33.43%	30.83%	35.29%	72.90%	71.21%	73.83%				
42	39.63%	38.77%	40.44%	32.66%	29.32%	35.64%	72.61%	69.83%	74.57%				
43	40.22%	38.62%	44.27%	33.67%	31.42%	35.57%	73.12%	72.30%	75.02%				
44	39.94%	37.20%	42.19%	33.02%	31.23%	35.25%	72.78%	69.14%	74.88%				
45	39.46%	37.44%	41.31%	33.15%	30.23%	37.30%	73.93%	72.44%	75.58%				
		36.60%		1				68.84%					
47	41.84%	40.26%	43.87%	34.20%	31.91%	36.34%	74.63%	72.07%	76.99%				

Table 100. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								AB	OVE	_70								
		po	pula	tion	500						p	opula	tion	100				
$ _{\rm case~\#}$		500) ger	ıerat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	-	_	_	_	-	-	-	_	_	-	-	-	556	779	1105	1371	_	-
29	-	-	-	-	-	-	-	-	-	-	-	-	670	910	1132	-	-	-
30	-	-	-	-	-	-	-	-	-	-	-	-	675	927	1158	-	-	-
31	-	-	-	-	-	-	-	-	-	-	-	-	792	1036	1132	-	-	-
32	-	-	-	-	-	-	-	-	-	-	-	-	713	1026	1221	-	-	-
33	-	-	-	-	-	-	-	-	-	-	-	-	626	993	1373	-	-	-
34	-	-	-	-	-	-	-	-	-	-	-	-	628	951	1351	-	-	-
35		-	-	-	-	-	-	-	-	-	-	-	674	1019	1214	-	-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	637	952	1240	-	-	-
37		-	-	-	-	-	-	-	-	-	-	-	782	1216	-	-	-	-
38		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
39		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	1400	-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	1480	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45		-	-	-	-	-	-	-	-	-	-	-	1447	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	1272	-	-	-	-	-

 $\textbf{Table 101.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	ABO	OVE_70	
	pop. 500	pop	. 100
case #	500 gen.	500 gen.	1500 gen.
	avg. time	avg. time	avg. time
28	48.08	9.16	27.02
29	48.94	9.35	26.17
30	48.00	9.23	26.13
31	49.08	8.90	26.22
32	46.67	8.85	26.49
33	46.37	8.79	27.11
34	46.33	8.82	26.74
35	46.63	8.88	26.24
36	46.31	8.82	26.06
37	47.79	9.35	26.73
38	96.50	17.65	53.13
39	92.96	17.72	52.25
40	92.73	18.42	52.22
41	99.05	18.70	52.10
42	98.13	18.29	52.20
43	97.90	18.69	52.19
44	99.02	18.60	52.15
45	98.85	18.56	54.09
46	98.07	18.77	52.79
47	98.05	18.44	52.36

 ${\bf Table~102.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

	ABOVE_80 fitness value												
				fit	ness va	lue							
	pop	ulation	500			populat	ion 100)					
case #	500	generat	ions	500	generat	tions	1500	genera	tions				
	avg	min	max	avg	min	max	avg	min	max				
28	64.54%	63.14%	66.24%	56.91%	51.16%	61.33%	90.26%	87.27%	91.85%				
29	65.23%	62.96%	67.15%	56.78%	54.77%	59.74%	88.47%	86.11%	89.57%				
30	63.32%	60.16%	65.23%	52.12%	49.47%	55.86%	87.74%	85.06%	89.42%				
31	60.76%	60.23%	61.71%	53.71%	50.06%	56.80%	85.80%	83.50%	86.74%				
32	64.09%	60.01%	67.05%	54.32%	50.87%	57.67%	89.56%	87.88%	91.87%				
33	64.37%	63.22%	65.69%	51.66%	49.38%	54.81%	87.83%	83.56%	90.56%				
34	65.78%	60.93%	70.48%	55.28%	49.29%	59.76%	89.33%	87.50%	90.51%				
35	64.10%	60.81%	67.30%	53.26%	51.33%	56.18%	88.58%	84.27%	91.34%				
36	61.26%	58.89%	64.69%	53.03%	51.91%	54.13%	86.90%	86.08%	87.96%				
37	64.56%	63.95%	66.01%	52.13%	50.74%	53.21%	88.20%	86.57%	90.76%				
38	50.19%	49.09%	51.79%	39.44%	37.07%	41.40%	76.48%	73.28%	80.10%				
39	49.97%	47.40%	52.60%	39.61%	36.52%	42.35%	76.05%	74.77%	79.10%				
40	49.21%	47.69%	50.94%	42.44%	40.80%	43.37%	78.55%	74.77%	82.37%				
41	50.15%	47.28%	53.10%	39.47%	37.94%	40.65%	76.87%	75.65%	78.26%				
42	50.76%	48.54%	53.35%	41.86%	40.02%	43.41%	76.79%	74.23%	78.42%				
43	51.42%	49.18%	53.23%	40.63%	38.88%	42.54%	77.80%	76.04%	79.41%				
44	51.94%	50.38%	53.01%	40.60%	38.60%	43.77%	77.28%	75.77%	79.98%				
45	49.57%	47.30%	52.77%	41.13%	39.11%	42.30%	77.58%	77.10%	78.35%				
46	51.31%	50.06%	53.66%	40.25%	37.63%	43.44%	76.54%	73.57%	78.29%				
47	51.58%	48.25%	53.62%	43.80%	42.05%	45.03%	79.89%	78.49%	81.53%				

Table 103. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								AB	OVE	_80								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500) ger	ıerat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	-	-	_	_	-	-	-	_	-	-	-	-	375	535	822	1301	-	-
29	-	-	-	-	_	-	-	-	-	-	-	-	524	762	1090	-	-	-
30	-	-	-	-	-	-	-	-	-	-	-	-	617	818	1202	-	-	-
31	-	-	-	-	-	-	-	-	-	-	-	-	626	847	1276	-	-	-
32	-	-	-	-	-	-	-	-	-	-	-	-	509	724	1050	1300	-	-
33	-	-	-	-	-	-	-	-	-	-	-	-	511	706		1445		-
34	-	-	-	-	-	-	-	-	-	-	-	-	466	654	954	1395	-	-
35	-	-	-	-	-	-	-	-	-	-	-	-	592	757	1106	1382	-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	479	786	1214	-	-	-
37	-	-	-	-	-	-	-	-	-	-	-	-	484	718	1194	1222	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	1275	1479	-	-	-	-
39	-	-	-	-	-	-	-	-	-	-	-	-	1315	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	1175	1226	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	1279	-	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	1239	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	1254	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	1320	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-	1170	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	1283	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	1056	1367	-	-	-	-

 $\textbf{Table 104.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds. } \\$

	ABO	OVE_80	
	pop. 500		. 100
case #	500 gen.	500 gen.	$1500 { m \ gen.}$
	avg. time		
28	46.51	8.92	26.58
29	48.18	8.93	26.81
30	46.63	8.84	26.63
31	46.67	8.94	26.37
32	46.75	9.07	26.51
33	46.66	8.99	27.05
34	46.48	9.03	26.64
35	46.95	8.89	26.62
36	46.36	8.83	27.47
37	47.18	9.24	27.05
38	92.89	17.62	52.69
39	92.81	17.75	52.80
40	92.79	17.70	52.88
41	92.76	17.71	52.58
42	94.50	18.63	53.29
43	97.92	18.56	52.82
44	97.99	18.65	52.77
45	93.60	18.56	52.50
46	98.12	18.14	52.65
47	97.25	17.79	52.69

 ${\bf Table~105.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				ABO	VE_90				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 10	0	
case #	500	generat	tions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	80.87%	78.42%	83.68%	66.42%	61.22%	70.25%	93.04%	91.06%	94.11%
29	78.52%	74.31%	81.26%	64.17%	61.69%	66.43%	90.61%	88.16%	94.04%
30	76.89%	73.62%	80.63%	63.53%	58.10%	68.47%	88.12%	85.83%	90.57%
31	75.23%	73.22%	76.27%	60.12%	58.13%	64.70%	88.26%	86.84%	90.94%
32	78.00%	74.10%	80.19%	62.70%	59.52%	65.24%	90.61%	89.42%	92.55%
33	80.35%	78.24%	82.38%	65.08%	58.19%	70.90%	91.39%	89.83%	94.46%
34	78.44%	77.54%	79.31%	64.17%	60.83%	67.84%	88.77%	85.20%	91.28%
35	78.53%	76.00%	81.56%	64.97%	60.68%	70.38%	90.99%	89.19%	92.42%
36	78.99%	75.54%	81.89%	63.79%	59.84%	68.15%	90.14%	87.26%	92.75%
37	76.70%	75.30%	79.65%	62.74%	60.74%	66.70%	90.10%	87.77%	93.59%
38	65.36%	63.27%	67.88%	50.00%	49.14%	50.77%	80.41%	78.32%	82.36%
39	67.95%	64.50%	72.48%	49.56%	45.28%	54.25%	78.00%	74.71%	79.47%
40	66.25%	63.58%	69.62%	52.01%	50.00%	54.25%	81.53%	77.96%	84.42%
41	66.07%	64.75%	67.54%	51.94%	50.27%	53.91%	81.10%	79.33%	83.58%
42	67.36%	64.25%	70.95%	52.70%	48.49%	56.29%	81.47%	79.65%	83.33%
43	67.82%	65.42%	69.69%	49.97%	47.07%	52.45%	80.30%	77.86%	82.70%
44	66.91%	65.37%	68.96%	48.38%	44.20%	53.09%	78.99%	76.87%	80.73%
45	65.65%	61.49%	67.87%	51.82%	49.75%	54.72%	79.66%	78.77%	80.99%
46	65.91%	63.89%	67.73%	47.79%	45.03%	49.62%	80.53%	78.23%	82.24%
47	69.90%	66.47%	71.54%	52.29%	50.11%	54.64%	81.26%	76.94%	84.42%

Table 106. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								AB	OVE	_90								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	ger	ıerat	ions			500) ger	ierat	ions			150	0 ger	ıerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	244	404	-	-	-	-	-	-	-	-	-	-	361	483	750	1003	-	-
29	282	454	-	-	-	-	-	-	-	-	-	-	456	596	920	1238	-	-
30	321	459	-	-	-	-	-	-	-	-	-	-	496	736	1125	1417	-	-
31	383	-	-	-	-	-	-	-	-	-	-	-	520	744	1125	1438	-	-
32	330	443	-	-	-	-	-	-	-	-	-	-	373	502	824	1190	-	-
33	260	367	-	-	-	-	-	-	-	-	-	-	436	630	956	1239	-	-
34	343	-	-	-	-	-	-	-	-	-	-	-	431	613	943	1328	-	-
35	336	415	-	-	-	-	-	-	-	-	-	-	437	582	883	1249	-	-
36	251	335	-	-	-	-	-	-	-	-	-	-	432	592	-	1191		-
37	366	-	-	-	-	-	-	-	-	-	-	-	462	651		1283	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	1019	1350	-	-	-	-
39	-	-	-	-	-	-	-	-	-	-	-	-	1089	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-		1287		-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-		1311		-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-		1254		-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-		1323		-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	1105	1269	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-		1453		-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	1034	1355	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	1025	1215	-	-	-	-

 $\textbf{Table 107.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	ABO	OVE_90	
	pop. 500	pop	. 100
$ _{\mathrm{case}} \#$	500 gen.	500 gen.	1500 gen.
	avg. time	avg. time	avg. time
28	46.60	8.95	26.63
29	46.92	9.02	26.66
30	46.90	8.99	26.68
31	46.95	9.04	26.65
32	48.41	9.11	26.63
33	46.75	8.98	26.72
34	46.63	9.47	26.64
35	48.47	8.99	26.72
36	47.34	9.21	26.67
37	49.25	8.97	26.69
38	93.37	17.85	53.39
39	93.75	18.04	53.33
40	98.68	18.11	53.58
41	94.33	18.97	53.56
42	99.08	18.89	53.28
43	99.47	18.41	54.30
44	95.70	18.92	53.80
45	93.66	17.73	53.11
46	93.65	17.89	53.07
47	93.32	17.74	53.20

 ${\bf Table~108.~Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.}$

				ABO	VE_95				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 10	0	
case #	500	generat	tions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	84.01%	82.17%	85.71%	70.68%	67.62%	74.56%	92.91%	90.68%	94.99%
29	82.33%	78.96%	85.51%	64.47%	59.46%	67.83%	91.15%	90.31%	92.87%
30	81.69%	78.57%	85.64%	67.65%	65.88%	70.20%	90.85%	86.12%	93.26%
31	78.69%	73.40%	81.65%	61.68%	60.26%	64.27%	89.73%	85.67%	91.90%
32	83.23%	80.36%	85.79%	65.70%	62.70%	69.34%	90.30%	88.82%	92.33%
33	80.92%	79.20%	83.03%	67.04%	61.81%	74.58%	89.87%	86.28%	91.98%
34	80.51%	78.66%	81.39%	66.46%	64.27%	68.44%	90.00%	88.83%	90.70%
35	82.14%	78.45%	85.41%	63.28%	59.15%	67.18%	90.25%	88.33%	91.65%
36	82.13%	79.41%	86.29%	68.33%	63.11%	72.38%	90.83%	89.29%	92.40%
37	79.37%	75.71%	81.54%	66.41%	63.62%	69.63%	89.92%	86.82%	92.07%
38	71.15%	69.63%	73.54%	53.14%	51.38%	56.39%	79.64%	77.60%	80.50%
39	72.04%	67.97%	76.43%	51.03%	47.38%	56.66%	78.72%	76.35%	81.23%
40	72.65%	71.21%	74.59%	54.50%	52.26%	57.02%	81.21%	79.55%	83.12%
41	74.77%	72.27%	76.94%	51.47%	47.42%	53.26%	80.62%	77.08%	83.97%
42	73.04%	71.10%	74.89%	54.15%	48.30%	57.30%	80.35%	77.96%	81.77%
43	73.55%	68.05%	79.00%	52.49%	49.00%	56.53%	81.35%	80.08%	83.15%
44	73.60%	69.88%	77.55%	52.99%	51.07%	57.53%	79.50%	79.03%	80.48%
45	72.56%	68.79%	75.11%	53.79%	50.19%	55.84%	80.44%	78.77%	82.91%
46	72.27%	69.15%	74.43%	51.64%	47.99%	53.26%	80.06%	79.14%	82.42%
47	75.21%	74.24%	76.12%	55.09%	53.32%	56.85%	83.30%	79.68%	86.08%

Table 109. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								AB	OVE	_95								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	ger	ıerat	ions			500) ger	ierat	ions			150	0 ger	ıerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	184	318	403	-	_	_	<u> -</u>	_	_	_	_	_	308	432	611	1077	-	_
29	271	363	449	-	-	-	-	-	-	-	-	-	466	649	824	1267	-	-
30	274	408	459	-	-	-	-	-	-	-	-	-	525	744	1044	1280	-	-
31	286	425	-	-	-	-	-	-	-	-	-	-	459	715	1014	1330	-	-
32	235	360	458	-	-	-	-	-	-	-	-	-	447	591	912	1313	-	-
33	276	376	-	-	-	-	-	-	-	-	-	-	487	637	989	1349	-	-
34	306	445	-	-	-	-	-	-	-	-	-	-	417	651	919	1423	-	-
35	254	355	448	-	-	-	-	-	-	-	-	-	490	599	975	1275	-	-
36	231	327	400	-	-	-	-	-	-	-	-	-	415	562	818	1253	-	-
37	328	463	-	-	-	-	-	-	-	-	-	-	546	745	1063	1333	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	1052	1438	-	-	-	-
39	436	-	-	-	-	-	-	-	-	-	-	-	1135	1394	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	954	1344	-	-	-	-
41	471	-	-	-	-	-	-	-	-	-	-	-	1002	1343	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	1050	1326	-	-	-	-
43	449	-	-	-	-	-	-	-	-	-	-	-	989	1372	-	-	-	-
44			-	-	-	-	-	-	-	-	-	-	1094	1444	-	-	-	-
45		-	-	-	-	-	-	-	-	-	-	-	1023	1363	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-		1391		-	-	-
47	387	-	-	-	-	-	-	-	-	-	-	-	940	1078	1360	-	-	-

 $\textbf{Table 110.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	ABO	OVE_95	
	pop. 500		. 100
case #	500 gen.	500 gen.	$1500 { m \ gen.}$
	avg. time		
28	46.03	9.20	26.86
29	50.60	9.70	27.15
30	50.77	9.75	26.98
31	50.71	9.52	26.92
32	45.72	9.02	26.81
33	47.71	9.12	26.83
34	47.43	9.13	26.94
35	48.12	9.13	27.78
36	47.54	9.23	27.55
37	49.08	9.44	27.08
38	97.73	19.32	53.95
39	100.22	19.00	54.62
40	100.35	18.72	55.75
41	100.46	19.35	53.76
42	96.78	18.23	54.12
43	96.40	18.60	55.40
44	95.22	18.24	54.86
45	91.12	18.23	56.20
46	95.34	18.35	54.95
47	95.18	18.39	55.30

 ${\bf Table~111.}~ Reached~ percentages~ of~ the~ optimizations~ of~ synthetic~ datasets~ for~ Cases~ 28–47~ in~ our~ experiments.$

FR_LIN_5														
				fit	ness va	lue								
	pop	ulation	500	population 100										
case #	500	genera	tions	500	genera	tions	1500	genera	tions					
	avg	min	max	avg	min	max	avg	min	max					
28	48.94%	47.27%	52.47%	41.41%	35.01%	45.81%	81.18%	77.80%	83.77%					
29	39.20%	34.77%	41.67%	32.87%	30.37%	36.04%	74.71%	72.49%	77.25%					
30	42.83%	39.91%	44.53%	30.93%	27.55%	33.38%	75.22%	70.52%	80.81%					
31	40.65%	37.84%	44.14%	31.11%	28.32%	34.38%	75.79%	72.37%	79.79%					
32	43.69%	41.83%	46.49%	35.21%	32.81%	40.40%	76.82%	74.74%	78.33%					
33	44.38%	42.53%	47.23%	36.19%	33.40%	42.30%	74.29%	67.59%	78.08%					
34	41.34%	39.70%	42.97%	35.75%	33.26%	37.42%	77.69%	70.93%	82.36%					
35	40.41%	36.88%	42.76%	33.44%	31.70%	37.38%	75.97%	73.37%	78.81%					
36	43.67%	40.28%	46.18%	37.17%	33.65%	40.81%	77.81%	73.14%	81.77%					
37	42.52%	41.05%	45.74%	34.09%	31.81%	37.57%	74.75%	69.35%	79.71%					
38	27.41%	26.14%	28.53%	21.94%	20.48%	22.96%	58.80%	55.36%	62.17%					
39	28.80%	26.14%	31.03%	22.27%	19.07%	26.08%	59.25%	55.68%	62.24%					
40	29.00%	26.91%	30.58%	25.25%	23.11%	26.93%	62.39%	60.18%	64.72%					
41	26.23%	23.76%	28.19%	21.26%	19.50%	22.70%	60.87%	57.97%	64.81%					
42	29.87%	28.71%	31.27%	22.35%	20.29%	23.89%	59.73%	55.35%	63.07%					
43	30.52%	29.25%	33.23%	24.10%	22.77%	26.46%	62.11%	60.95%	63.87%					
1		25.79%						56.31%						
45	28.28%	27.25%	30.66%	23.40%	18.74%	26.13%	60.33%	57.80%	63.07%					
		29.13%					58.23%	54.11%	64.09%					
		26.86%												

Table 112. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

FR_LIN_5																		
		po	pula	tion	500		population 100											
case #		500 generations						500		1500 generations								
		80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	-	-	-	-	-	-	-	-	-	-	-	_	832	1157	-	-	-	-
29	-	-	-	-	-	-	-	-	-	-	-	-	1232	-	-	-	-	-
30	-	-	-	-	-	-	-	-	-	-	-	-	1078	1488	-	-	-	-
31	-	-	-	-	-	-	-	-	-	-	-	-	1141	-	-	-	-	-
32	-	-	-	-	-	-	-	-	-	-	-	-	1216	-	-	-	-	-
33	-	-	-	-	-	-	-	-	-	-	-	-	1234	-	-	-	-	-
34	-	-	-	-	-	-	-	-	-	-	-	-	1141	1272	-	-	-	-
35	-	-	-	-	-	-	-	-	-	-	-	-	1188	-	-	-	-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	1017	966	-	-	-	-
37	-	-	-	-	-	-	-	-	-	-	-	-	1148	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

 $\textbf{Table 113.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

FR_LIN_5											
	pop. 500										
case #	500 gen.	500 gen.	1500 gen.								
<u> </u>	avg. time										
28	61.30	12.41	34.82								
29	62.03	12.26	35.09								
30	61.95	12.32	35.13								
31	62.04	12.23	34.86								
32	60.64	12.29	34.90								
33	61.85	11.94	35.18								
34	61.00	12.45	34.85								
35	62.06	12.48	35.77								
36	61.27	12.47	35.82								
37	62.45	12.49	35.40								
38	127.31	25.27	73.33								
39	125.88	24.36	71.29								
40	120.22	23.88	72.39								
41	119.98	23.86	72.79								
42	121.40	24.07	71.22								
43	120.79	23.95	71.95								
44	120.40	23.80	72.76								
45	121.85	23.95	73.60								
46	126.90	25.19	71.30								
47	128.33	24.26	71.40								

 ${\bf Table~114.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

FR_LIN_7														
				fit	ness va	lue								
	pop	ulation	500	population 100										
case #	500	genera	tions	500	genera	tions	1500 generations							
	avg min		max	avg	min	max	avg	min	max					
28	61.95%	58.98%	63.84%	53.93%	49.77%	56.78%	86.92%	86.37%	87.75%					
29	52.28%	49.93%	56.13%	45.29%	42.40%	48.05%	84.05%	82.70%	84.82%					
30	54.20%	51.95%	55.87%	45.20%	42.06%	47.20%	78.84%	74.74%	82.69%					
31	55.36%	52.55%	57.55%	44.62%	42.67%	46.98%	82.84%	80.00%	85.27%					
32	58.52%	56.15%	65.13%	49.13%	46.03%	53.04%	81.08%	77.94%	86.00%					
33	59.10%	56.95%	61.02%	48.07%	44.08%	53.12%	83.66%	82.41%	84.41%					
34	56.53%	54.46%	60.81%	48.91%	47.78%	50.07%	85.19%	82.87%	86.92%					
35	57.37%	55.55%	59.21%	46.40%	43.62%	48.07%	82.68%	81.69%	84.61%					
36	57.45%	54.73%	60.24%	49.67%	46.32%	54.57%	84.66%	83.54%	85.95%					
37	56.00%	54.04%	59.93%	49.30%	44.75%	55.12%	83.56%	81.33%	85.76%					
38	39.68%	37.85%	41.85%	31.82%	28.84%	34.91%	68.81%	66.08%	70.97%					
39	41.51%	38.34%	44.93%	30.96%	28.31%	32.79%	67.82%	65.74%	70.33%					
40	41.81%	39.68%	43.63%	34.61%	30.22%	38.43%	71.45%	70.41%	73.61%					
41	41.08%	38.23%	45.14%	33.18%	30.95%	35.16%	68.66%	65.92%	70.75%					
42	43.62%	40.83%	46.58%	33.89%	31.86%	36.31%	68.40%	66.36%	69.39%					
43	44.45%	43.15%	46.88%	35.29%	33.34%	37.29%	70.36%	68.93%	71.65%					
44	39.74%	36.81%	41.67%	32.16%	31.22%	33.02%	69.78%	67.38%	71.81%					
45	42.27%	39.96%	44.14%	35.23%	33.03%	37.86%	68.51%	64.37%	73.44%					
46	43.13%	40.07%	46.07%	33.77%	31.40%	37.66%	67.08%	64.65%	68.94%					
47	43.85%	41.59%	46.60%	38.27%	36.46%	40.74%	71.70%	69.23%	76.01%					

Table 115. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

	FR_LIN_7																		
		po	pula	tion	500		population 100												
$ _{\mathrm{case}\ \#} $	500 generations						500) ger	ierat	ions		1500 generations							
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	
28	-	_	_	_	_	_	-	_	_	_	_	_	587	803	1259	-	_	-	
29	-	-	-	-	-	-	-	-	-	-	-	-	715	978	-	-	-	-	
30	-	-	-	-	-	-	-	-	-	-	-	-	974	1161	-	-	-	-	
31	-	-	-	-	-	-	-	-	-	-	-	-	855	1167	1411	-	-	-	
32	-	-	-	-	-	-	-	-	-	-	-	-	842	1257	1449	-	-	-	
33	-	-	-	-	-	-	-	-	-	-	-	-	686	994	-	-	-	-	
34	-	-	-	-	-	-	-	-	-	-	-	-	647	1031	1384	-	-	-	
35	-	-	-	-	-	-	-	-	-	-	-	-	841	1140	-	-	-	-	
36	-	-	-	-	-	-	-	-	-	-	-	-	613	865	1322	-	-	-	
37	-	-	-	-	-	-	-	-	-	-	-	-	831	1146	1400	-	-	-	
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
47	-	-	-	-	-	-	-	-	-	-	-	-	1384	-	-	-	-	-	

 $\textbf{Table 116.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds. } \\$

	FR_	_LIN_7	
	pop. 500		. 100
case #	500 gen.	500 gen.	1500 gen.
<u> </u>	avg. time		
28	61.10	12.34	35.12
29	62.07	12.15	35.27
30	58.88	11.80	35.15
31	59.00	12.21	35.13
32	59.46	11.80	35.13
33	59.01	12.46	35.16
34	62.40	12.30	35.20
35	61.70	11.80	35.88
36	58.63	11.81	35.07
37	58.61	11.80	35.47
38	120.89	23.90	72.30
39	127.21	25.23	71.76
40	124.50	25.00	71.42
41	125.40	24.72	71.45
42	125.70	25.07	72.84
43	127.98	23.88	71.72
44	121.62	23.94	72.05
45	125.49	24.41	73.21
46	126.27	24.93	74.74
47	120.79	23.95	73.66

 $\textbf{Table 117.} \ \ \text{Reached percentages of the optimizations of synthetic datasets for Cases 28–47 in our experiments.}$

				FR_I	IN_10				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 100	0	
case #	500	generat	ions	500	genera	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	73.02%	70.91%	74.80%	65.29%	62.77%	68.33%	90.16%	88.37%	91.67%
29	68.63%	66.82%	70.41%	55.57%	53.38%	56.99%	87.61%	84.37%	89.26%
30	69.29%	67.62%	70.63%	53.58%	47.09%	59.01%	86.82%	84.45%	88.99%
31	70.41%	67.79%	73.43%	55.38%	50.45%	62.26%	81.77%	80.22%	83.67%
32	70.34%	69.67%	71.08%	60.41%	55.24%	65.07%	86.07%	84.61%	88.40%
33	72.56%	66.55%	75.93%	58.90%	55.74%	60.78%	87.39%	85.44%	88.62%
34	69.46%	66.94%	71.69%	60.90%	58.64%	65.66%	86.83%	85.30%	88.14%
35	69.47%	68.16%	71.80%	59.28%	55.31%	62.51%	85.82%	83.47%	86.84%
36	70.23%	68.66%	73.40%	60.06%	57.65%	64.89%	87.15%	85.49%	88.70%
37	69.50%	66.22%	71.86%	58.18%	55.93%	63.25%	87.11%	85.54%	89.58%
38	53.10%	51.11%	54.90%	42.13%	39.22%	43.70%	73.92%	72.28%	75.60%
39	53.98%	51.88%	55.66%	44.59%	42.08%	47.53%	73.53%	70.46%	75.45%
40	56.02%	55.45%	56.52%	45.66%	43.00%	49.09%	75.77%	74.30%	76.74%
41	54.72%	52.97%	56.57%	43.15%	38.64%	48.02%	74.94%	72.40%	77.81%
42	58.20%	55.15%	59.90%	45.29%	41.74%	49.23%	74.66%	71.72%	77.12%
43	56.22%	54.63%	58.90%	46.68%	40.94%	50.22%	73.90%	72.91%	74.88%
44	55.12%	52.11%	58.42%	43.88%	42.48%	47.47%	72.91%	70.81%	73.72%
45	57.06%	53.68%	60.04%	46.09%	42.58%	49.36%	74.58%	73.70%	75.05%
46	57.88%	56.89%	58.96%	44.77%	41.06%	47.46%	74.14%	70.94%	77.10%
47	59.83%	57.88%	61.81%	47.79%	46.60%	49.91%	77.81%	75.60%	80.83%

Table 118. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								FR	LIN	_10								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500) ger	ıerat	ions			500) ger	ierat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	-	-	-	-	-	_	-	-	_	_	-	- 1	427	598	965	1288	-	-
29	-	-	-	-	-	-	-	-	-	-	-	-	619	837	1119	-	-	-
30	-	-	-	-	-	-	-	-	-	-	-	-	653	920	1275	-	-	-
31	-	-	-	-	-	-	-	-	-	-	-	-	794	1242	-	-	-	-
32	-	-	-	-	-	-	-	-	-	-	-	-	586	837	1188	-	-	-
33	347	-	-	-	-	-	-	-	-	-	-	-	608	834	1180	-	-	-
34	-	-	-	-	-	-	-	-	-	-	-	-	547	773	1227	-	-	-
35		-	-	-	-	-	-	-	-	-	-	-	632		1277		-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	547	853	1261	-	-	-
37	-	-	-	-	-	-	-	-	-	-	-	-	670		1259	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	1464	-	-	-	-	-
39	-	-	-	-	-	-	-	-	-	-	-	-	1385	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	1351	-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	1383	-	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	1357	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-	1366	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	1325	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	1260	1424	-	-	-	-

 $\textbf{Table 119.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	FR_	LIN_10	
	pop. 500		. 100
case #	500 gen.	$ 500~{ m gen.} $	$1500 { m \ gen.}$
	avg. time		
28	62.56	12.58	35.88
29	60.38	12.63	35.71
30	60.65	12.51	36.18
31	62.59	12.65	35.74
32	62.73	11.95	36.12
33	59.52	11.99	36.66
34	59.54	12.25	36.65
35	59.97	12.08	35.50
36	59.37	11.92	35.33
37	59.44	11.97	35.57
38	123.12	24.64	72.74
39	122.52	24.29	72.26
40	121.72	24.24	71.95
41	122.10	24.29	71.83
42	123.01	24.38	72.10
43	122.31	24.32	72.08
44	122.33	24.31	72.23
45	122.37	24.31	71.97
46	122.81	24.23	72.18
47	124.99	25.46	72.12

 ${\bf Table~120.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				FR_I	IN_20				
				fit	ness va	lue			
"	pop	ulation	500			populat	ion 10	0	
case #	500	generat	ions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	84.02%	81.50%	87.45%	67.47%	64.46%	76.01%	90.85%	88.46%	95.21%
29	83.46%	80.92%	84.54%	65.62%	61.87%	70.44%	87.18%	84.86%	88.80%
30	77.73%	76.41%	78.80%	64.67%	61.38%	71.55%	86.58%	82.44%	89.51%
31	79.24%	76.57%	82.12%	64.12%	60.44%	69.53%	86.63%	84.47%	88.33%
32	81.64%	79.68%	83.18%	66.29%	60.91%	71.86%	89.82%	87.74%	92.51%
33	83.88%	80.95%	87.02%	66.61%	62.12%	73.69%	87.77%	86.01%	88.83%
34	82.07%	80.11%	85.62%	66.83%	62.66%	68.92%	87.56%	81.78%	91.60%
35	81.40%	79.15%	84.09%	64.40%	62.13%	68.15%	85.99%	84.28%	88.51%
36	81.57%	80.07%	82.92%	66.56%	65.32%	67.86%	89.05%	86.48%	93.01%
37	80.48%	78.35%	82.72%	64.04%	61.54%	65.55%	87.57%	84.72%	90.67%
38	71.84%	68.44%	73.92%	52.74%	49.21%	56.00%	76.53%	73.47%	79.04%
39	72.78%	70.69%	74.46%	49.88%	47.99%	54.14%	75.36%	71.29%	79.64%
40	70.17%	66.24%	75.18%	56.09%	55.04%	57.15%	77.28%	76.63%	78.92%
		69.37%							
42	73.17%	69.88%	75.45%	53.18%	46.64%	58.83%	78.05%	76.96%	78.77%
43	73.91%	71.16%	76.19%	52.94%	48.99%	55.62%	77.79%	76.58%	79.41%
		68.70%							
45	74.14%	70.37%	75.63%	52.91%	50.09%	54.81%	76.62%	74.62%	77.82%
		71.77%							
47	74.85%	73.58%	76.91%	57.80%	55.92%	59.83%	80.10%	79.01%	81.15%

Table 121. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								FR	LIN	_20								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	ger	ıerat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	151	295	251	-	_	_	496	_	_	_	_	_	289	489	755	1205	1478	-
29	166	308	-	-	-	-	-	-	_	-	-	-	575	777	1075	-	-	-
30	319	-	-	-	-	-	-	-	-	-	-	-	615	899	1178	-	-	-
31	258	401	-	-	-	-	-	-	-	-	-	-	607	810	1266	-	-	-
32	201	432	-	-	-	-	-	-	-	-	-	-	565	752	1023	1222	-	-
33		341			-	-	-	-	-	-	-	-	518		1149		-	-
34	194	358	496	-	-	-	-	-	-	-	-	-	627			1208	-	-
35		340		-	-	-	-	-	-	-	-	-	577	868	1383	-	-	-
36		341		-	-	-	-	-	-	-	-	-	451			982		-
37		301	-	-	-	-	-	-	-	-	-	-	615		1070	1433	-	-
38		-	-	-	-	-	-	-	-	-	-	-	1343		-	-	-	-
39		-	-	-	-	-	-	-	-	-	-	-	1165		-	-	-	-
40	457		-	-	-	-	-	-	-	-	-	-	1264		-	-	-	-
41	477		-	-	-	-	-	-	-	-	-	-		1313	-	-	-	-
42	469		-	-	-	-	-	-	-	-	-	-	1202	-	-	-	-	-
43	383	-	-	-	-	-	-	-	-	-	-	-	1157	-	-	-	-	-
44	474	-	-	-	-	-	-	-	-	-	-	-	1292	-	-	-	-	-
45			-	-	-	-	-	-	-	-	-	-	1291		-	-	-	-
46			-	-	-	-	-	-	-	-	-	-	1224		-	-	-	-
47	461	-	-	-	-	-	-	-	-	-	-	-	1031	1342	-	-	-	-

 $\textbf{Table 122.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	FR_	LIN_20	
	pop. 500		. 100
case #	500 gen.	500 gen.	1500 gen.
	avg. time		
28	62.33	12.14	36.51
29	63.03	12.18	36.14
30	59.91	12.58	36.55
31	59.96	12.12	36.46
32	60.05	12.29	36.34
33	62.76	12.74	36.21
34	61.22	12.83	36.12
35	63.65	12.74	36.31
36	61.11	12.30	35.71
37	60.00	12.10	36.00
38	123.26	24.55	73.02
39	129.44	25.29	72.76
40	130.17	26.15	72.68
41	128.81	26.23	72.86
42	130.81	26.18	72.97
43	131.56	26.01	73.74
44	130.28	26.14	74.63
45	132.31	26.01	73.66
46	130.80	25.70	73.53
47	130.96	26.09	74.72

 ${\bf Table~123.}~ {\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				OQ_	LIN_5				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 10	0	
case #	500	generat	ions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	94.77%	92.85%	96.00%	79.82%	75.04%	82.51%	92.76%	90.75%	94.43%
29	91.99%	90.33%	94.63%	75.96%	74.19%	78.34%	90.39%	88.04%	92.84%
30	91.22%	89.48%	93.37%	74.41%	72.95%	76.96%	88.42%	86.71%	91.46%
31	89.98%	86.83%	91.20%	72.62%	70.58%	76.20%	86.61%	85.35%	88.70%
32	93.87%	92.22%	95.75%	75.03%	72.45%	77.25%	90.96%	89.12%	93.59%
33	91.86%	89.00%	94.09%	75.87%	72.85%	79.19%	90.45%	86.48%	93.71%
34	91.05%	89.28%	92.19%	75.61%	71.64%	78.77%	88.60%	86.94%	90.66%
35	92.83%	89.65%	95.02%	75.79%	70.98%	79.14%	91.38%	89.73%	92.17%
36	91.22%	88.58%	92.87%	76.43%	73.51%	79.03%	90.61%	89.28%	92.34%
37	92.31%	91.30%	94.74%	75.72%	73.78%	77.79%	90.97%	89.07%	94.44%
38	81.55%	78.70%	83.37%	65.19%	61.99%	67.48%	82.15%	77.99%	87.41%
39	82.41%	79.80%	85.42%	62.56%	57.84%	65.58%	79.95%	76.84%	83.36%
40	82.99%	81.04%	85.64%	61.85%	60.40%	63.19%	81.71%	80.07%	83.16%
41	83.55%	81.41%	85.32%	64.96%	61.25%	69.48%	81.15%	77.63%	82.67%
42	84.88%	82.40%	87.43%	63.13%	60.87%	64.68%	80.82%	78.24%	83.34%
43	83.68%	80.89%	85.75%	63.09%	60.86%	66.59%	80.73%	78.72%	82.10%
44	82.52%	81.19%	83.42%	63.22%	62.02%	65.14%	79.98%	76.46%	82.33%
45	82.80%	80.87%	85.55%	62.74%	59.44%	66.02%	81.56%	75.72%	85.02%
46	84.05%	82.46%	85.78%	63.73%	62.18%	65.19%	78.66%	75.31%	84.17%
47	84.65%	83.01%	85.95%	64.56%	61.68%	67.40%	83.67%	82.96%	85.65%

Table 124. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								OQ	_LIN	N_5								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	gen	erat	ions			500	ger	ıerat	ions			150	0 gei	nerat	ions	
		80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	165	197	234	317	449	-	368	467	-	-	_	-	301	444	645	1070	-	-
29	173	200	247	403	-	-	380	-	-	-	-	-	469	656	963	1305	-	-
30	202	228	335	442	-	-	434	-	-	-	-	-	506	636	924	1239	-	-
31	202	251	324	453	-	-	472	-	-	-	-	-	571	842	1262	-	-	-
32	175	196	229	336	484	-	451	-	-	-	-	-	428	553	934	1314	-	-
33	177	213	290	318	-	-	436	-	-	-	-	-	353	495		1112		-
34	180	206	280	427	-	-	409	-	-	-	-	-	405	614	1005	1406	-	-
35	173	195	261	375	497	-	391	-	-	-	-	-	400	563	833	1133	-	-
36	180	214	280	431		-	364		-	-	-	-	375	538		1224		-
37	169	206		385	-	-	413	-	-	-	-	-	433	619		1295	-	-
38	314	420		-	-	-	-	-	-	-	-	-		1122		-	-	-
39	289	379	487	-	-	-	-	-	-	-	-	-	-	1312		-	-	-
40	298	393	477	-	-	-	-	-	-	-	-	-		1196		-	-	-
41	293	378	473		-	-	-	-	-	-	-	-		1346		-	-	-
42	267		481		-	-	-	-	-	-	-	-		1290		-	-	-
43	301		466	-	-	-	-	-	-	-	-	-		1312		-	-	-
44	332	424		-	-	-	-	-	-	-	-	-		1197		-	-	-
45			495		-	-	-	-	-	-	-	-		1219		-	-	-
46			473		-	-	-	-	-	-	-	-		1332		-	-	-
47	263	360	482	-	-		-	-	-	-	-	-	803	1144	1445		-	-

 $\textbf{Table 125.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	OQ	_LIN_5	
	pop. 500		. 100
case #	500 gen.	500 gen.	1500 gen.
	avg. time		
28	48.53	9.63	27.98
29	48.26	9.61	28.15
30	48.82	9.82	27.93
31	48.87	10.16	27.76
32	51.16	9.68	28.02
33	48.01	9.82	27.81
34	50.48	10.12	28.09
35	51.90	10.12	28.21
36	51.26	9.95	27.89
37	49.03	9.82	28.18
38	99.27	19.16	55.96
39	95.39	18.96	55.69
40	94.20	18.96	55.64
41	94.67	18.93	56.86
42	96.50	18.94	55.66
43	96.00	19.20	55.85
44	96.17	20.03	56.05
45	97.55	19.94	55.84
46	101.70	20.06	56.27
47	102.08	19.98	55.92

 ${\bf Table~126.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				OQ_	LIN_7				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 100	0	
case #	500	generat	tions	500	genera	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	94.29%	92.58%	95.53%	80.81%	76.08%	83.98%	93.94%	92.68%	94.90%
29	92.96%	90.78%	93.71%	79.52%	76.46%	81.82%	90.03%	88.27%	91.78%
30	91.04%	89.63%	92.67%	76.39%	72.75%	82.08%	90.37%	89.31%	91.86%
31	91.05%	88.57%	92.73%	75.51%	69.96%	78.76%	88.26%	85.29%	90.96%
32	93.14%	91.80%	93.96%	77.05%	74.84%	80.17%	91.42%	90.29%	92.82%
33	89.30%	87.73%	92.47%	76.86%	74.58%	81.06%	90.37%	87.51%	93.03%
34	91.94%	91.29%	93.05%	75.67%	72.96%	76.90%	91.63%	88.25%	95.49%
35	93.56%	91.75%	96.02%	77.16%	76.08%	77.62%	90.50%	89.23%	91.93%
36	93.43%	92.02%	94.93%	77.33%	73.78%	80.22%	89.82%	87.80%	92.52%
37	93.86%	92.92%	95.07%	77.35%	73.89%	79.38%	91.82%	89.39%	94.76%
38	84.15%	81.79%	86.46%	63.43%	62.04%	66.50%	80.04%	78.03%	82.70%
39	82.34%	81.45%	83.59%	62.73%	59.15%	66.41%	80.37%	78.68%	82.58%
40	84.44%	82.86%	86.46%	66.72%	62.84%	71.62%	82.63%	80.11%	83.80%
41	85.17%	83.06%	87.62%	65.63%	61.35%	69.61%	81.98%	78.45%	85.83%
42	84.72%	83.69%	85.41%	64.21%	61.57%	67.25%	82.25%	80.81%	84.76%
43	84.22%	83.68%	85.14%	65.17%	60.94%	69.64%	80.33%	78.76%	82.24%
44	85.39%	82.22%	89.40%	64.12%	59.89%	67.90%	80.84%	77.21%	82.61%
45	83.55%	81.11%	87.00%	65.17%	63.06%	67.93%	80.32%	77.87%	81.49%
46	83.71%	82.93%	84.70%	63.55%	61.10%	65.84%	80.69%	79.66%	81.56%
47	85.26%	81.89%	87.16%	65.51%	63.13%	68.29%	82.90%	80.30%	85.12%

Table 127. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								OQ	_LI	N_7								
		pol	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	gen	erat	ions			500) ger	ıerat	ions			150	0 ger	ıerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	118	139	174	297	461	-	314	430	_	-	_	-	295	384	654	915	_	-
29	130	160	223	338	-	-	372	440	-	-	-	-	459	608	921	1267	-	-
30	144	188	269	431	-	-	441	429	-	-	-	-	464	677	934	1324	-	-
31	134	158	242	400	-	-	414	-	-	-	-	-	465	707	1150	1419	-	-
32	128	163	241	357	501	-	439	499	-	-	-	-	395	519	848	1304	-	-
33	156	208	325	358	-	-	403	486	-	-	-	-	425	593	862	1234	-	-
34	129	157	217	375	-	-	453	-	-	-	-	-	448	607	864	1244	1428	-
35	132	160	227	333	443	-	434	-	-	-	-	-	389	579	842	1372	-	-
36	130	160	217	336	-	-	399	483	-	-	-	-	411	575	905	1215	-	-
37	122	149	217	329	474	-	378	-	-	-	-	-	448	624	844	1250	-	-
38	232	352	478	-	-	-	-	-	-	-	-	-	1043	1315	-	-	-	-
39	274	407	-	-	-	-	-	-	-	-	-	-	1028	1276	-	-	-	-
40	245	355	438	-	-	-	-	-	-	-	-	-	789	1207	-	-	-	-
41	235	318	415	-	-	-	-	-	-	-	-	-	1000	1194	1380	-	-	-
42	240	362	478	-	-	-	-	-	-	-	-	-	906	1313	-	-	-	-
43	254	369	474	-	-	-	-	-	-	-	-	-	960	1363	-	-	-	-
44	265	355	443	-	-	-	-	-	-	-	-	-	1060	1272	-	-	-	-
45	237		455	-	-	-	-	-	-	-	-	-		1433		-	-	-
46	241	-		-	-	-	-	-	-	-	-	-		1216		-	-	-
47	207	275	437	-	-	-		-	-	-	-	-	769	1179	1464		-	

 $\textbf{Table 128.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	OQ	_LIN_7	
	pop. 500		. 100
case #	500 gen.	500 gen.	$1500 { m \ gen.}$
	avg. time		
28	49.19	9.62	28.30
29	49.59	9.76	27.87
30	49.96	9.69	28.02
31	49.39	9.74	28.97
32	50.28	9.94	28.26
33	52.04	10.17	27.88
34	51.44	10.22	28.64
35	52.42	10.15	28.46
36	53.70	10.28	28.03
37	50.08	9.89	28.03
38	98.33	19.28	56.09
39	98.31	19.45	57.84
40	97.82	19.14	56.44
41	97.85	19.73	56.03
42	103.40	19.42	57.01
43	99.46	19.20	58.28
44	97.75	19.20	56.76
45	99.87	20.62	57.14
46	102.02	19.84	56.07
47	103.38	19.97	55.97

 ${\bf Table~129.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				OQ_I	LIN_10				
				fit	ness va	lue			
[i	pop	ulation	500			populat	ion 10	0	
case #	500	generat	tions	500	genera	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	96.55%	95.44%	97.26%	81.86%	80.47%	83.11%	95.13%	92.97%	96.83%
29	93.98%	91.65%	96.13%	76.98%	75.42%	78.87%	90.35%	88.43%	92.10%
30	92.04%	90.93%	93.83%	75.70%	69.92%	81.47%	90.22%	86.37%	93.73%
31	91.10%	89.20%	91.82%	76.37%	74.75%	78.81%	88.57%	83.26%	90.50%
32	94.20%	92.03%	95.71%	79.28%	74.16%	81.83%	90.15%	86.55%	92.32%
33	92.88%	90.77%	94.41%	79.41%	74.97%	84.06%	90.24%	88.30%	92.17%
34	92.96%	90.81%	95.35%	79.53%	76.67%	82.07%	90.14%	88.51%	91.00%
35	92.54%	90.44%	94.39%	77.58%	75.66%	79.30%	91.32%	88.97%	94.14%
36	94.17%	93.29%	96.22%	79.15%	75.16%	81.77%	92.27%	89.69%	94.43%
37	93.98%	91.16%	96.15%	76.18%	72.04%	81.20%	90.88%	89.13%	92.31%
38	84.45%	81.76%	86.59%	66.36%	63.93%	69.10%	81.84%	79.10%	84.07%
39	84.92%	84.27%	86.34%	62.98%	58.14%	65.04%	79.83%	78.20%	82.27%
40	86.00%	83.88%	88.27%	64.27%	63.15%	65.42%	83.62%	82.47%	85.54%
41	85.56%	82.67%	87.17%	67.17%	66.19%	68.37%	82.58%	79.48%	86.08%
42	83.97%	81.25%	85.15%	67.09%	65.04%	69.85%	82.05%	78.16%	84.80%
43	84.83%	81.71%	87.35%	65.49%	62.88%	69.25%	81.48%	79.62%	83.33%
44	84.57%	82.02%	86.18%	65.15%	63.25%	67.17%	80.08%	77.52%	82.54%
45	85.52%	81.10%	87.86%	66.83%	64.19%	69.25%	82.70%	81.07%	84.24%
46	84.38%	82.56%	85.42%	64.37%	60.07%	67.41%	82.20%	79.68%	85.50%
47	85.94%	85.05%	87.23%	66.78%	65.95%	67.83%	83.36%	80.52%	85.99%

Table 130. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								OQ	LIN	J_10								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}} \#$		500) ger	erat	ions			500) ger	ıerat	ions	1		150	0 ge	nerat	tions	
		80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	100	120	157	231	383	-	299	432	-	-	_	-	321	507	725	976	1267	-
29	119	137	210	316	471	-	414	-	-	-	-	-	434	614	959	1395	-	-
30	128	164	259	402	-	-	395	421	-	-	-	-	452	631	993	1169	-	-
31	127	176	273	419	-	-	444	-	-	-	-	-	502	779	1015	1467	-	-
32	111	146	186	304	414	-	343	485	-	-	-	-	398	576	863	1272	-	-
33	112	138	199	343	-	-	361	424	-	-	-	-	421	563	763	1284	-	-
34	118	151	203	344	490	-	356	450	-	-	-	-	361	523	773	1408	-	-
35	110	152	222	363	-	-	425	-	-	-	-	-	415	593	790	1181	-	-
36	114	149	212	308	331	-	350	439	-	-	-	-	387	537	806	1091	-	-
37	107	135	184	282	465	-	430	463	-	-	-	-	415	585	841	1325	-	-
38	248	352	456	-	-	-	-	-	-	-	-	-	949	1295	-	-	-	-
39	248	339	453	-	-	-	-	-	-	-	-	-	1020	1395	-	-	-	-
40	215	308	443	-	-	-	-	-	-	-	-	-	825	1198	1421	-	-	-
41	226	326	408	-	-	-	-	-	-	-	-	-	_	1240		-	-	-
42	236	359	485	-	-	-	-	-	-	-	-	-	949	1213	-	-	-	-
43	263	378	445	-	-	-	-	-	-	-	-	-	940	1367	-	-	-	-
44	260	375	457	-	-	-	-	-	-	-	-	-	993	1342	-	-	-	-
45		344	465	-	-	-	-	-	-	-	-	-	871	1137	-	-	-	-
46	223	327	478	-	-	-	-	-	-	-	-	-	953	1272	1421	-	-	-
47	203	308	456	-	-	-	-	-	-	-	-	-	801	1204	1410	-	-	-

 $\textbf{Table 131.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	$OQ_{_}$	LIN_10	
	pop. 500		. 100
case #	500 gen.	500 gen.	$1500 { m \ gen.}$
	avg. time		
28	52.45	10.56	27.92
29	53.85	10.58	27.92
30	55.00	10.45	28.10
31	54.62	10.47	28.30
32	53.87	10.47	29.14
33	54.04	10.35	29.07
34	52.18	10.54	28.35
35	53.42	9.95	28.26
36	51.80	10.32	27.90
37	51.64	10.35	27.92
38	102.39	19.94	56.07
39	103.09	19.51	55.79
40	100.86	19.64	56.19
41	101.63	19.67	56.38
42	102.35	20.38	55.85
43	104.12	19.73	57.89
44	100.71	19.66	57.60
45	101.80	19.56	57.31
46	102.27	19.67	56.26
47	101.89	19.54	56.11

 ${\bf Table~132.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				ORDE	R_LIN				
				fit	ness va	lue			
[i	pop	ulation	500			populat	ion 100	0	
case #	500	generat	tions	500	genera	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	96.12%	94.22%	97.26%	83.40%	80.66%	87.87%	93.51%	89.42%	96.10%
29	93.52%	91.33%	95.21%	80.63%	78.32%	84.56%	91.45%	90.55%	92.64%
30	93.42%	89.27%	96.56%	75.69%	72.69%	80.76%	89.23%	88.86%	89.63%
31	91.20%	89.19%	93.31%	74.20%	71.54%	77.58%	88.94%	86.23%	91.84%
32	93.45%	91.19%	94.91%	77.71%	74.23%	80.82%	91.42%	91.01%	92.43%
33	92.53%	89.82%	94.72%	77.53%	76.22%	78.36%	90.92%	89.44%	92.55%
34	93.33%	92.27%	94.37%	78.73%	77.30%	81.03%	90.20%	89.09%	91.67%
35	94.25%	91.86%	96.16%	78.74%	73.99%	83.27%	90.26%	88.32%	92.28%
36	93.53%	91.57%	94.96%	80.86%	77.52%	85.35%	91.63%	90.18%	93.14%
37	92.98%	91.89%	94.60%	77.98%	75.28%	81.03%	92.01%	90.10%	94.81%
38	84.92%	82.91%	86.74%	65.79%	64.06%	68.37%	81.95%	78.75%	85.55%
39	83.63%	82.32%	84.41%	65.52%	64.05%	69.83%	79.14%	77.81%	80.95%
40	85.43%	83.34%	88.21%	65.91%	64.60%	66.97%	82.97%	80.37%	85.90%
41	85.78%	84.67%	86.95%	65.73%	62.17%	72.26%	82.78%	79.72%	85.96%
42	84.29%	80.79%	86.40%	67.32%	62.04%	71.25%	81.59%	79.05%	83.00%
43	85.10%	84.02%	86.27%	65.81%	62.24%	71.02%	81.21%	79.00%	83.16%
44	86.34%	84.26%	89.03%	65.49%	64.03%	67.38%	82.72%	81.15%	85.51%
		83.46%							
46	83.19%	81.09%	84.30%	66.05%	65.01%	67.02%	81.16%	77.00%	83.28%
		83.54%							

Table 133. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								ORI)ER_	LIN	ſ							
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}} \#$		500) ger	erat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	86	120	160	237	436	-	311	405	425	-	_	-	291	420	592	943	1180	-
29	101	132	192	305	465	-	370	445	-	-	-	-	368	517	742	1192	-	-
30	112	155	228	318	417	-	434	497	-	-	-	-	422	608	902	-	-	-
31	108	170	245	377	-	-	434	-	-	-	-	-	498	770	1163	1370	-	-
32	107	155	211	327	-	-	381	449	-	-	-	-	424	544	820	1216	-	-
33	116	155	227	340	-	-	423	-	-	-	-	-	375	540	903	1220	-	-
34	116	154	221	319	-	-	370	431	-	-	-	-	404	577	825	1371	-	-
35	104	152	218	317	458	-	370	437	-	-	-	-	405	555	758	1298	-	-
36	98	124	204	319	-	-	313	386	481	-	-	-	426	607	875	1266	-	-
37	117	168	243	362	-	-	421	440	-	-	-	-	462	572	766	1224	-	-
38	235	352	458	-	-	-	-	-	-	-	-	-	893	1271	1354	-	-	-
39	257	370	-	-	-	-	-	-	-	-	-	-	1046	1271	-	-	-	-
40	257	340	471	-	-	-	-	-	-	-	-	-	885	1259	1470	-	-	-
41	219	316	444	-	-	-	-	-	-	-	-	-			1379	-	-	-
42	233	364	481	-	-	-	-	-	-	-	-	-	933	1243	-	-	-	-
43	234	322	475	-	-	-	-	-	-	-	-	-	959	1242	-	-	-	-
44	226	295	418	-	-	-	-	-	-	-	-	-	870	1232	1483	-	-	-
45	252	349	489	-	-	-	-	-	-	-	-	-		1270		-	-	-
46	256	375	-	-	-	-	-	-	-	-	-	-	942	1281	-	-	-	-
47	225	326	479	-	-	-	-	-	-	-	-	-	802	1094	1454	-	-	-

 $\textbf{Table 134.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	ORD	ER_LIN	
	pop. 500		. 100
$ _{\mathrm{case}} \#$	500 gen.	500 gen.	$1500 { m \ gen.}$
<u> </u>		avg. time	
28	54.31	10.48	27.93
29	51.83	10.12	28.12
30	51.14	9.76	28.93
31	51.13	9.76	28.11
32	51.01	10.47	28.04
33	52.51	9.78	27.81
34	50.98	9.79	27.93
35	50.83	9.84	27.98
36	51.60	9.82	28.97
37	51.56	9.84	28.05
38	102.41	19.39	56.10
39	102.39	20.47	56.26
40	108.35	20.66	56.23
41	106.72	20.40	57.62
42	105.92	19.98	58.12
43	101.98	19.53	56.74
44	102.15	19.64	56.24
45	102.78	20.39	56.19
46	103.75	19.58	56.45
47	103.56	19.71	56.23

 ${\bf Table~135.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				ORDE	R_LOG				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 10	0	
case #	500	generat	tions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	96.68%	95.59%	97.76%	81.02%	77.37%	84.14%	93.54%	91.38%	95.11%
29	94.39%	92.62%	95.68%	75.89%	70.07%	79.47%	91.03%	89.89%	91.85%
30	93.87%	93.20%	94.98%	78.20%	76.75%	79.12%	90.65%	87.72%	92.84%
31	91.96%	89.51%	94.07%	75.97%	74.28%	79.37%	87.54%	83.72%	90.16%
32	92.85%	90.83%	94.40%	79.94%	79.29%	80.37%	90.92%	88.98%	91.82%
33	92.51%	91.34%	94.50%	77.95%	74.84%	82.93%	91.28%	89.56%	92.91%
34	92.43%	90.53%	94.24%	76.37%	71.41%	82.90%	90.91%	87.76%	93.53%
35	93.25%	91.30%	95.17%	77.49%	74.19%	80.79%	93.01%	90.45%	94.81%
36	93.66%	91.51%	95.44%	80.70%	78.17%	84.19%	90.38%	87.78%	91.89%
37	92.67%	90.92%	93.60%	78.57%	76.78%	80.83%	91.99%	90.10%	94.09%
38	85.95%	83.85%	88.20%	64.40%	60.92%	65.68%	81.04%	79.24%	82.52%
39	83.55%	82.37%	84.99%	62.31%	57.51%	65.39%	80.34%	78.54%	85.03%
40	85.30%	82.14%	89.19%	66.98%	66.03%	67.87%	82.85%	81.40%	84.07%
41	87.18%	85.69%	88.66%	63.87%	61.82%	66.81%	83.89%	81.40%	89.70%
42	85.64%	84.11%	87.24%	66.74%	63.23%	70.57%	82.67%	80.55%	87.56%
43	84.41%	83.14%	85.13%	66.17%	62.59%	68.69%	82.31%	80.48%	83.10%
44	85.97%	84.26%	88.27%	65.16%	61.78%	68.03%	82.48%	80.36%	84.46%
45	85.45%	83.48%	87.50%	65.85%	61.82%	68.20%	80.98%	79.36%	82.33%
46	83.42%	81.10%	85.88%	66.59%	61.55%	71.01%	83.29%	82.71%	84.18%
47	85.51%	84.17%	87.46%	69.42%	67.22%	70.77%	84.60%	83.61%	85.54%

Table 136. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								ORE	ER_	LOC	7							
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	ger	erat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	80	104	165	246	387	-	301	428	-	_	_	-	306	461	651	1041	1405	-
29	104	155	205	312	427	-	402	-	-	-	-	-	412	532	806	1273	-	-
30	106	157	234	315	500	-	382	-	-	-	-	-	389	532	898	1193	-	-
31	130	198	261	379	-	-	446	-	-	-	-	-	494	668	985	1496	-	-
32	107	137	191	331	-	-	402	495	-	-	-	-	415	579	857	1213	-	-
33	102	148	234	375	-	-	381	360	-	-	-	-	417	596	874	1299	-	-
34	118	173	250	391	-	-	375	369	-	-	-	-	404	535	825	1123	-	-
35	110	152	239	357	487	-	389	500	-	-	-	-	408	557	786	1171	-	-
36	101	136	194	348	462	-	356	384	-	-	-	-	333	485	777	1359	-	-
37	102	141	210	351	-	-	393	476	-	-	-	-	367	529	814	1248	-	-
38	230	311	444	-	-	-	-	-	-	-	-	-	905	1353	-	-	-	-
39	266	379	-	-	-	-	-	-	-	-	-	-	1050	1237	1492	-	-	-
40	237	342	432	-	-	-	-	-	-	-	-	-	874	1222	-	-	-	-
41	209	278	428	-	-	-	-	-	-	-	-	-	851	1124	1182	-	-	-
42	230	325	453	-	-	-	-	-	-	-	-	-	919	1284	1294	-	-	-
43	268	371	474	-	-	-	-	-	-	-	-	-	943	1298	-	-	-	-
44	233	322	444	-	-	-	-	-	-	-	-	-	968	1293	-	-	-	-
45	227	316	476	-	-	-	-	-	-	-	-	-	995	1365	-	-	-	-
46	257	372	482	-	-	-	-	-	-	-	-	-	933	1262	-	-	-	-
47	211	293	467	-	-	-	-	-	-	-	-	-	724	1059	1424	-	-	-

 $\textbf{Table 137.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

	ORDI	ER_LOG	
	pop. 500		. 100
case #	500 gen.	500 gen.	1500 gen.
	avg. time		
28	52.06	9.85	28.03
29	51.43	9.86	28.11
30	51.70	9.85	28.05
31	52.89	10.30	28.04
32	52.99	9.94	28.13
33	50.99	9.82	28.80
34	50.84	9.79	28.12
35	51.19	9.87	27.98
36	53.41	9.98	28.09
37	54.02	10.27	28.59
38	109.01	20.52	56.04
39	109.04	19.64	56.70
40	102.25	20.21	56.43
41	106.78	19.34	56.16
42	105.76	20.68	56.63
43	105.55	19.88	56.59
44	105.59	20.49	55.99
45	103.98	19.51	56.02
46	102.05	19.73	56.19
47	108.02	20.76	56.02

 ${\bf Table~138.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

				TOI	P_10				
				fit	ness va	lue			
	pop	ulation	500			populat	ion 100)	
case #	500	generat	tions	500	generat	tions	1500	genera	tions
	avg	min	max	avg	min	max	avg	min	max
28	95.97%	94.89%	96.92%	80.05%	76.25%	83.96%	93.83%	92.17%	95.12%
29	93.53%	92.09%	95.50%	75.22%	73.02%	78.42%	91.47%	90.24%	92.56%
30	93.09%	91.19%	96.73%	75.44%	71.34%	79.28%	89.87%	87.19%	91.64%
31	90.63%	87.20%	92.65%	75.07%	71.49%	79.72%	88.77%	87.14%	90.47%
32	94.01%	92.27%	95.23%	76.13%	71.33%	78.71%	91.12%	89.35%	94.24%
33	92.66%	91.41%	93.64%	74.64%	69.30%	82.04%	89.71%	88.22%	93.28%
34	92.95%	91.90%	93.89%	77.58%	75.97%	80.52%	89.78%	87.47%	92.42%
35	92.24%	89.69%	94.83%	76.57%	73.14%	80.05%	90.31%	87.58%	92.24%
36	93.35%	90.73%	96.08%	77.07%	75.17%	78.90%	90.37%	89.57%	91.46%
37	92.53%	90.41%	94.96%	74.52%	72.51%	78.60%	88.86%	86.50%	91.57%
38	84.76%	83.37%	85.97%	62.56%	60.22%	66.20%	80.90%	79.36%	81.96%
39	82.65%	79.80%	85.98%	61.04%	58.92%	63.72%	79.98%	77.49%	82.20%
40	84.29%	82.96%	85.37%	63.81%	59.90%	67.57%	81.67%	78.52%	84.13%
41	87.45%	86.09%	88.87%	62.39%	60.71%	65.14%	82.63%	79.99%	84.88%
42	83.06%	79.74%	86.80%	63.16%	62.17%	65.23%	81.00%	77.82%	83.82%
43	83.54%	81.16%	88.08%	63.51%	61.69%	66.14%	79.08%	76.22%	81.70%
44	84.28%	81.67%	87.48%	62.48%	59.38%	65.43%	81.34%	78.64%	85.30%
45	84.05%	82.89%	85.45%	63.58%	59.08%	67.21%	80.41%	80.03%	80.87%
46	84.26%	81.50%	86.40%	62.81%	58.42%	67.33%	79.81%	76.82%	82.47%
47	85.55%	83.54%	87.38%	65.89%	64.42%	70.84%	83.17%	80.65%	85.23%

Table 139. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

								Т	OP_	10								
		po	pula	tion	500						p	opula	tion	100				
$ _{\mathrm{case}\;\#}$		500	gen	erat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
"	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	79	106	152	245	392	-	333	433	-	-	-	-	360	499	743	1044	1453	-
29	92	129	206	350	441	-	440	-	-	-	-	-	413	541	786	1255	-	-
30	94	133	205	337	372	-	438	-	-	-	-	-	491	677	1004	1353	-	-
31	104	150	234	370	-	-	485	-	-	-	-	-	530	786	1102	1452	-	-
32	98	141	220	313	490	-	419	-	-	-	-	-	455	581	780	1210	-	-
33	88	128	180	344	-	-	372	403	-	-	-	-	485	667	985	1250	-	-
34	98	134	205	297	-	-	443	471	-	-	-	-	416	605	898	1276	-	-
35	90	131	213	330	-	-	378		-	-	-	-	495	691	997	1374	-	-
36	77	113	192	378	444	-	399	-	-	-	-	-	385	556	854	1347	-	-
37	98	137	240	388	-	-	400	-	-	-	-	-	480	696	1044	1296	-	-
38	224	332	472	-	-	-	-	-	-	-	-	-	958	1373	-	-	-	-
39	260	349	460	-	-	-	-	-	-	-	-	-	1111	1367	-	-	-	-
40	220	322	454	-	-	-	-	-	-	-	-	-	935	1225	-	-	-	-
41	178	248	390	-	-	-	-	-	-	-	-	-	918	1219	-	-	-	-
42	264	346	400	-	-	-	-	-	-	-	-	-	973	1200	-	-	-	-
43	241	369	433	-	-	-	-	-	-	-	-	-	1087	1321	-	-	-	-
44	251	362	435	-	-	-	-	-	-	-	-	-	924	1296	1415	-	-	-
45	220	363	495	-	-	-	-	-	-	-	-	-	907	1417	-	-	-	-
46	229	339	457	-	-	-	-	-	-	-	-	-	1065	1376	-	-	-	-
47	202	320	435	-	-	-	-	-	-	-	-	-	904	1204	1491	-	-	-

 $\textbf{Table 140.} \ \, \textbf{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

TOP_10										
	pop. 500									
case #	500 gen.	$500 { m \ gen.}$	1500 gen.							
	avg. time									
28	49.20	9.68	28.02							
29	49.67	9.69	27.63							
30	49.36	9.60	27.50							
31	49.40	10.04	27.42							
32	50.46	9.88	27.60							
33	50.02	10.19	27.61							
34	49.84	9.65	27.87							
35	49.55	10.10	27.47							
36	51.03	10.13	27.58							
37	52.57	9.96	27.92							
38	100.80	19.24	55.83							
39	100.45	20.06	55.51							
40	102.65	19.70	55.04							
41	99.46	19.39	54.93							
42	100.45	19.42	54.83							
43	101.06	19.34	55.05							
44	100.07	19.40	54.91							
45	100.89	19.39	54.91							
46	104.12	20.35	55.41							
47	106.60	20.23	55.58							

 ${\bf Table~141.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

TOP_20														
	fitness value													
[i	pop	ulation	500	population 100										
case #	500	generat	tions	500	generat	tions	1500	genera	tions					
	avg	min	max	avg	min	max	avg	min	max					
28	95.65%	93.75%	97.41%	79.58%	74.90%	84.55%	92.71%	90.53%	94.31%					
29	93.01%	91.03%	94.71%	73.77%	71.76%	76.52%	92.55%	91.19%	94.55%					
30	90.87%	88.73%	92.57%	75.40%	71.36%	77.72%	89.77%	87.98%	92.52%					
31	91.11%	89.54%	92.43%	73.25%	70.49%	77.09%	88.05%	85.28%	90.13%					
32	91.56%	89.32%	92.83%	76.99%	74.96%	79.31%	89.76%	87.37%	93.06%					
33	93.35%	92.28%	94.34%	77.07%	72.80%	80.52%	91.35%	88.22%	93.96%					
34	91.66%	90.88%	92.27%	74.90%	72.23%	79.15%	91.23%	89.90%	93.95%					
35	90.81%	89.23%	92.17%	77.98%	74.49%	80.51%	91.38%	89.96%	95.58%					
36	93.55%	91.29%	94.49%	76.33%	74.22%	77.34%	91.26%	90.00%	92.97%					
37	93.22%	92.12%	95.10%	72.80%	70.26%	74.78%	89.95%	87.96%	92.48%					
38	83.31%	82.60%	85.91%	60.65%	56.12%	64.16%	80.50%	78.72%	82.36%					
39	80.84%	77.30%	82.82%	60.18%	57.79%	62.28%	80.81%	79.33%	82.09%					
40	83.77%	81.44%	85.96%	64.11%	60.80%	67.51%	82.25%	79.16%	84.59%					
41	84.71%	82.81%	86.28%	63.15%	58.64%	66.94%	81.72%	80.21%	83.09%					
42	84.08%	83.59%	84.88%	62.75%	58.13%	65.62%	83.52%	81.42%	85.56%					
43	82.80%	80.63%	85.68%	63.82%	60.65%	66.85%	81.56%	79.65%	82.77%					
44	83.60%	80.60%	85.90%	63.82%	61.18%	68.24%	82.34%	79.71%	84.01%					
45	83.07%	81.18%	85.68%	63.79%	61.22%	66.56%	81.26%	79.27%	84.19%					
46	83.93%	81.52%	87.03%	58.49%	55.28%	62.30%	80.94%	79.37%	82.25%					
47	85.15%	83.74%	86.24%	65.54%	61.22%	68.05%	84.00%	82.50%	86.85%					

Table 142. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

	TOP_20																	
	population 500						population 100											
$ _{\mathrm{case}\;\#}$		500	ger	erat	ions			500) ger	ıerat	ions			150	0 gei	nerat	ions	
	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	120	138	171	234	382	-	293	324	_	_	_	-	303	434	680	1140	-	_
29	144	173	226	386	-	-	433	-	-	-	-	-	405	524	739	1099	-	-
30	149	185	248	404	-	-	457	-	-	-	-	-	447	633	895	1193	-	-
31	160	182	258	383	-	-	443	-	-	-	-	-	504	730	1067	1483	-	-
32	145	176	256	379	-	-	397	-	-	-	-	-	368	579	967	1230	-	-
33	133	153	190	292	-	-	392	448	-	-	-	-	449	666	893	1055	-	-
34	135	187	250	430	-	-	466	-	-	-	-	-	439	548	907	1286	-	-
35	159	213	284	445	-	-	404	482	-	-	-	-	468	606	860	1257	1455	-
36	143	164	216	363	-	-	391	-	-	-	-	-	382	510	782	1274	-	-
37	148	174	245	391	495	-	-	-	-	-	-	-	450	638	975	1347	-	-
38	252	360	458	-	-	-	-	-	-	-	-	-	1021	1357	-	-	-	-
39	295	413	-	-	-	-	-	-	-	-	-	-	994	1324	-	-	-	-
40	258	357	451	-	-	-	-	-	-	-	-	-	888	1200	-	-	-	-
41	266	351	474	-	-	-	-	-	-	-	-	-	922	1287	-	-	-	-
42	250	350	-	-	-	-	-	-	-	-	-	-	876	1164	1462	-	-	-
43	258	409	476	-	-	-	-	-	-	-	-	-	963	1394	-	-	-	-
44	270	367	474	-	-	-	-	-	-	-	-	-	1057	1297	-	-	-	-
45	259	387	457	-	-	-	-	-	-	-	-	-	876	1261	-	-	-	-
46	270	359	412	-	-	-	-	-	-	-	-	-	897	1255	-	-	-	-
47	233	311	449	-	-	-	-	-	-	-	-	-	910	1190	1311	-	-	-

 $\textbf{Table 143.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

TOP_20										
	pop. 500	pop. 100								
case #	500 gen.	500 gen.	1500 gen.							
	avg. time	avg. time	avg. time							
28	51.82	10.02	27.28							
29	52.33	10.10	27.26							
30	52.01	9.97	27.20							
31	50.84	9.90	27.15							
32	49.46	9.88	27.24							
33	51.52	9.75	27.09							
34	52.16	9.80	27.33							
35	50.04	9.50	27.32							
36	49.00	9.41	27.26							
37	49.44	9.47	27.18							
38	98.04	18.95	54.48							
39	98.59	19.21	54.46							
40	96.69	19.00	54.49							
41	96.74	18.89	54.38							
42	98.67	19.06	54.34							
43	98.70	19.00	55.24							
44	99.06	19.51	55.51							
45	101.44	19.65	55.95							
46	104.01	19.97	54.88							
47	101.18	19.90	54.60							

 ${\bf Table~144.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28–47~in~our~experiments.$

TOP_30														
	fitness value													
	pop	ulation	500	population 100										
case #	500	generat	tions	500	generat	tions	1500	genera	tions					
	avg	min	max	avg	min	max	avg	min	max					
28	80.94%	74.26%	87.23%	77.05%	71.79%	84.34%	94.16%	92.12%	95.89%					
29	86.61%	82.33%	88.13%	71.51%	69.27%	76.23%	92.44%	90.00%	94.74%					
30	81.59%	79.42%	84.74%	71.53%	68.11%	74.22%	89.43%	86.22%	91.06%					
31	79.46%	75.02%	85.50%	69.16%	64.07%	73.78%	90.06%	89.36%	90.50%					
32	82.12%	75.89%	86.52%	71.04%	69.78%	72.16%	91.19%	89.21%	93.19%					
33	79.43%	73.72%	89.48%	74.18%	71.61%	77.39%	91.13%	89.31%	93.14%					
34	81.23%	67.91%	86.05%	72.38%	69.14%	77.16%	91.08%	89.98%	92.42%					
35	85.45%	81.85%	87.76%	70.93%	68.80%	74.14%	90.76%	89.17%	91.87%					
36	76.04%	73.05%	82.06%	71.67%	69.50%	73.21%	92.19%	89.42%	93.83%					
37	82.53%	77.66%	86.60%	68.89%	63.88%	74.90%	90.27%	86.23%	93.86%					
38	58.20%	52.12%	64.21%	59.04%	56.47%	61.29%	82.48%	80.01%	85.10%					
39	49.20%	43.36%	57.49%	58.86%	55.65%	62.03%	80.25%	76.15%	83.21%					
40	58.09%	50.10%	72.58%	58.05%	54.94%	61.93%	82.77%	78.72%	84.63%					
41	53.88%	48.85%	61.41%	60.09%	58.63%	61.81%	82.90%	80.90%	84.30%					
42	60.79%	58.26%	64.41%	55.63%	53.19%	58.56%	82.38%	81.01%	83.55%					
43	58.51%	54.36%	67.61%	60.37%	56.84%	64.02%	83.10%	79.44%	85.49%					
44	57.95%	48.28%	63.94%	58.17%	54.79%	64.06%	81.50%	80.18%	83.11%					
45	52.56%	45.87%	63.44%	59.14%	53.45%	63.06%	80.71%	78.83%	83.89%					
46	58.43%	51.67%	62.53%	60.19%	53.68%	65.34%	82.22%	80.80%	84.38%					
47	62.42%	53.64%	66.16%	60.09%	56.14%									

Table 145. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

	TOP_30																	
	population 500						population 100											
$ _{\mathrm{case}~\#}$		500) ger	ierat	ions			500) ger	ierat	ions			150	0 gei	ıerat	ions	
"	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%	75%	80%	85%	90%	95%	100%
28	390	412	460	-	-	-	361	337	_	_	-	-	305	420	566	862	1329	-
29	367	411	446	-	-	-	437	-	-	-	-	-	420	544	781	1169	-	-
30	417	450	-	-	-	-	-	-	-	-	-	-	493	664	1018	1372	-	-
31	454	462	478	-	-	-	-	-	-	-	-	-	483	669	987	1407	-	-
32	403	433	462	-	-	-	-	-	-	-	-	-	380	513	851	1211	-	-
33	405	406	421	-	-	-	394	-	-	-	-	-	430	594	847	1325	-	-
34	403	443	496	-	-	-	392	-	-	-	-	-	393	528	866	1206	-	-
35	384	434	470	-	-	-	-	-	-	-	-	-	437	582	872	1381	-	-
36	457	458	-	-	-	-	-	-	-	-	-	-	318	448	715	1017	-	-
37	_	434	481	-	-	-	-	-	-	-	-	-	491	677	958	1074	-	-
38		-	-	-	-	-	-	-	-	-	-	-			1495	-	-	-
39		-	-	-	-	-	-	-	-	-	-	-	1018	1340	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-		1036		-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-		1272		-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-		1246		-	-	-
43	1	-	-	-	-	-	-	-	-	-	-	-			1492	-	-	-
44	l	-	-	-	-	-	-	-	-	-	-	-	-	1311		-	-	-
45	1	-	-	-	-	-	-	-	-	-	-	-		1249		-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	1291		-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	757	1059	1444	-	-	-

 $\textbf{Table 146.} \ \, \textbf{Average time of the optimizations of synthetic datasets for Cases 28–47 in our experiments. The average time is displayed as seconds.}$

TOP_30										
	pop. 500									
case #	500 gen.	500 gen.	1500 gen.							
<u> </u>	avg. time									
28	49.54	9.59	26.87							
29	49.34	9.61	27.28							
30	48.23	9.64	27.30							
31	49.47	9.65	26.68							
32	49.62	9.72	26.83							
33	48.13	9.69	26.93							
34	48.89	9.51	26.86							
35	48.22	9.57	27.63							
36	46.78	9.53	27.09							
37	49.41	9.63	26.80							
38	96.84	18.88	53.78							
39	98.49	18.65	55.22							
40	96.00	18.86	54.33							
41	97.31	18.51	55.42							
42	93.76	18.45	53.99							
43	96.05	18.28	53.80							
44	91.78	18.10	54.13							
45	95.48	19.06	54.52							
46	95.58	18.77	53.84							
47	97.32	18.45	53.95							

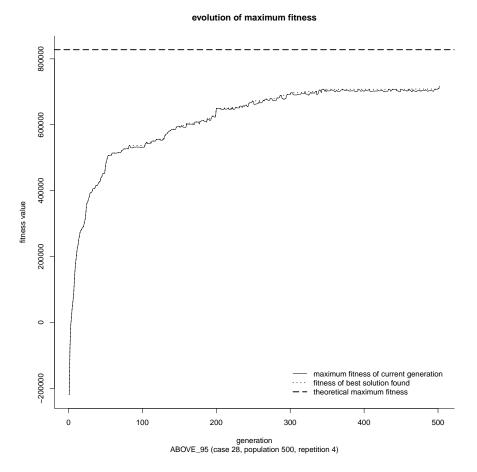


Fig. 62. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

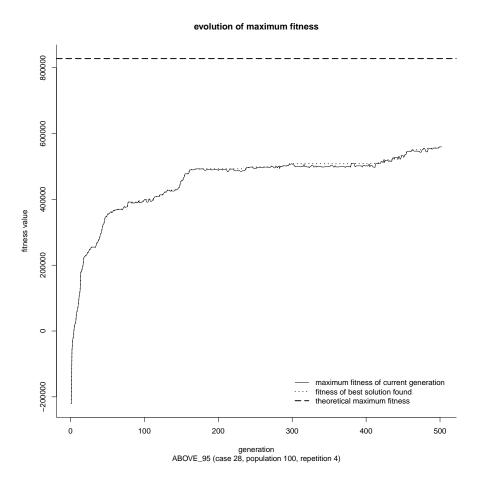


Fig. 63. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

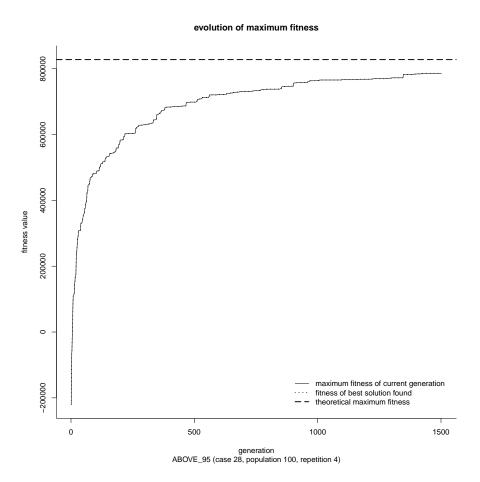


Fig. 64. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

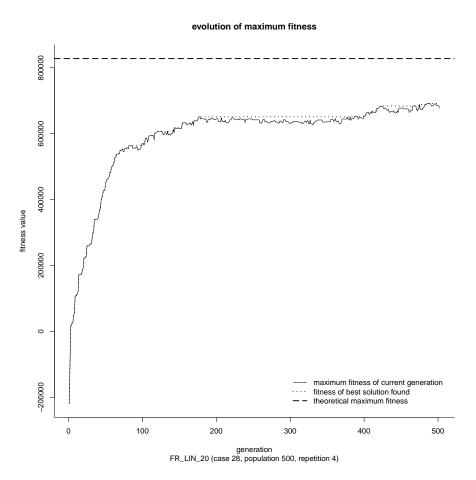


Fig. 65. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

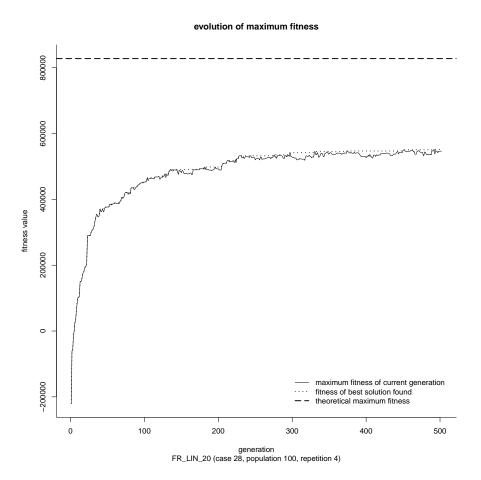


Fig. 66. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

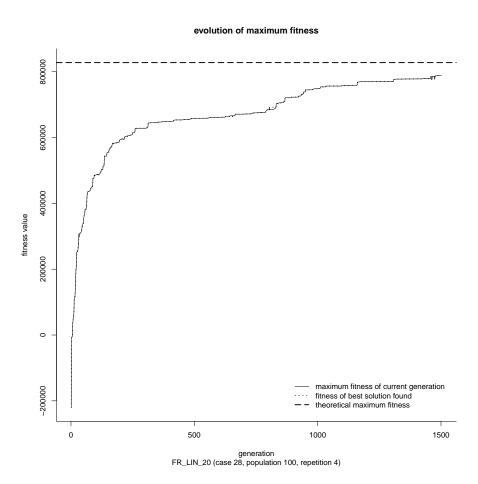


Fig. 67. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

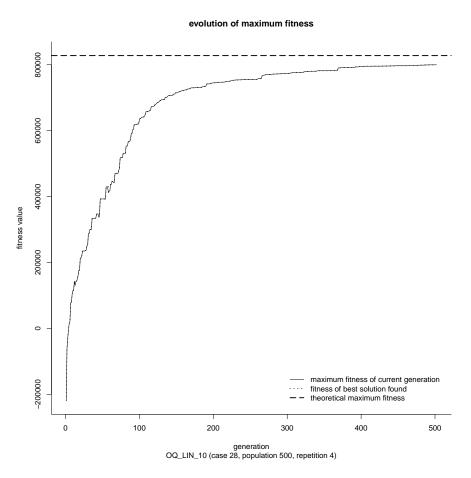


Fig. 68. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

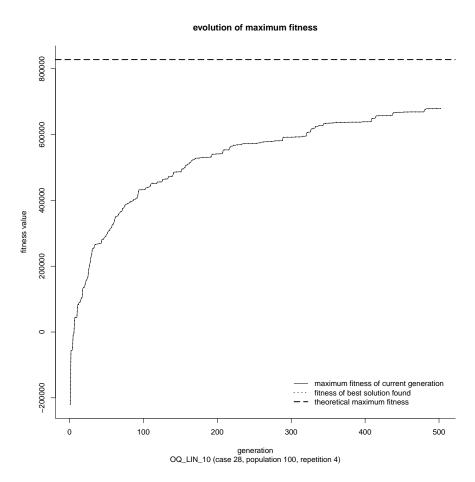


Fig. 69. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

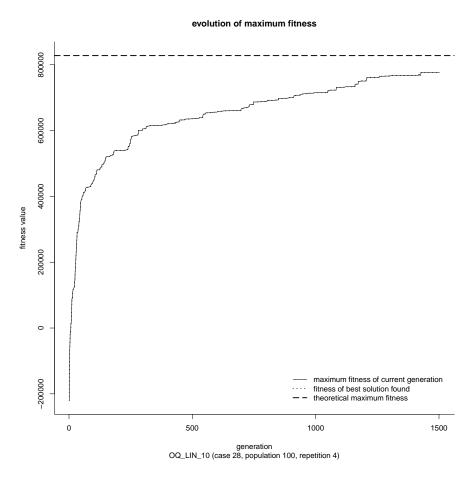


Fig. 70. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

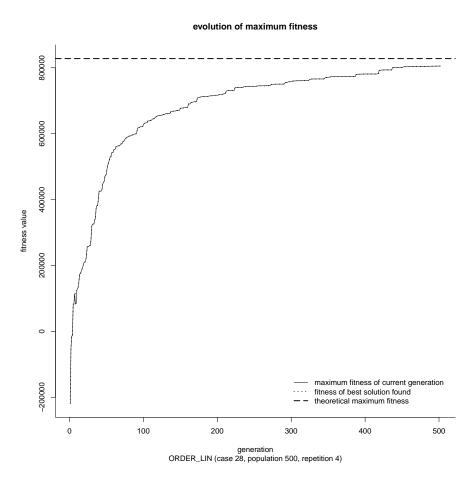


Fig. 71. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

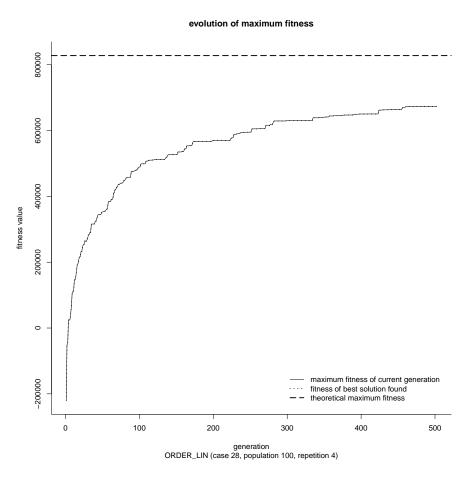


Fig. 72. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

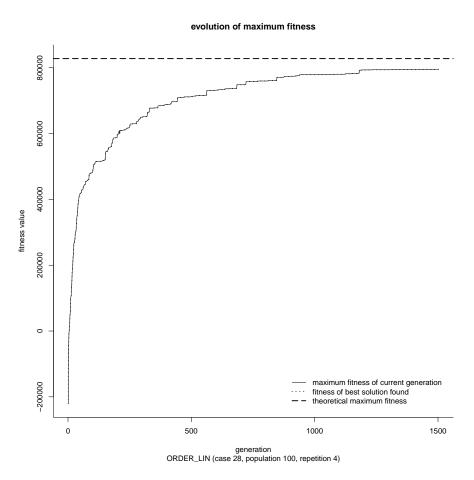


Fig. 73. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

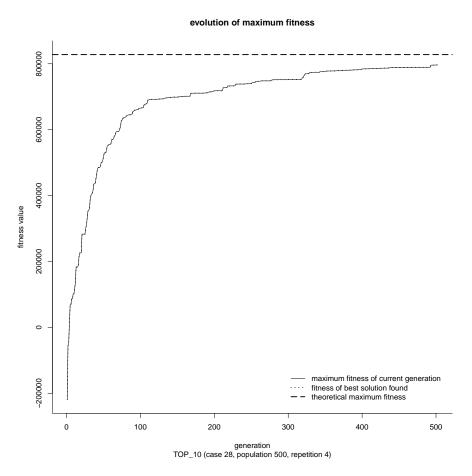


Fig. 74. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

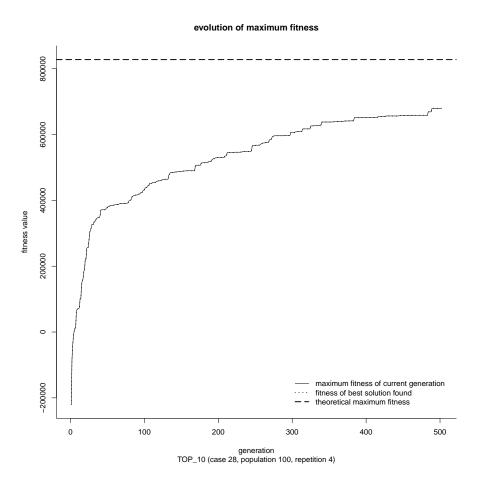


Fig. 75. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

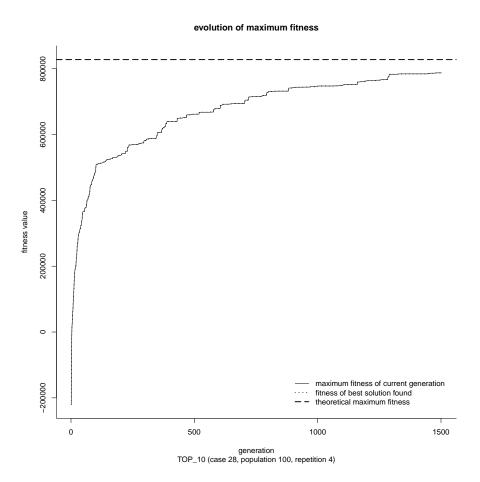


Fig. 76. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

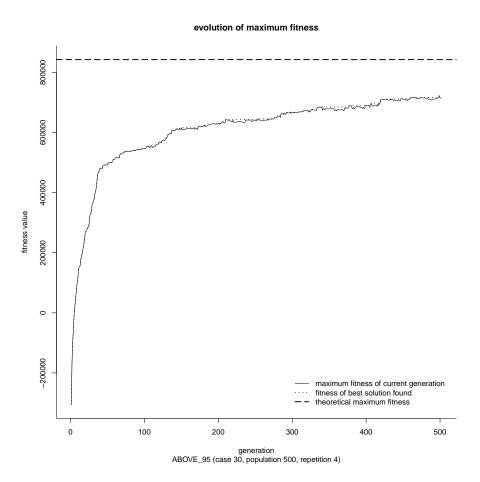


Fig. 77. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

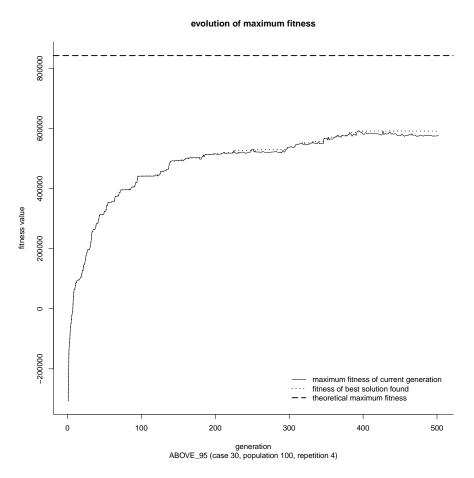


Fig. 78. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

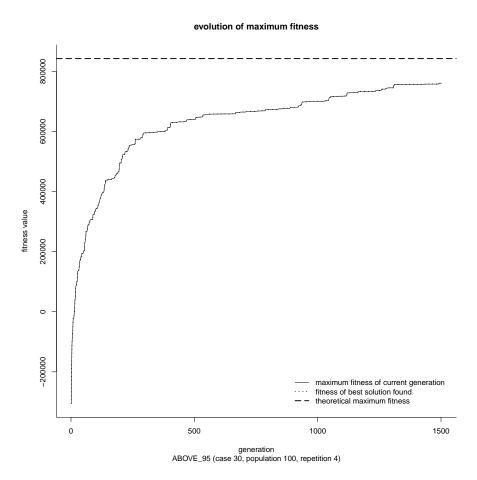


Fig. 79. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

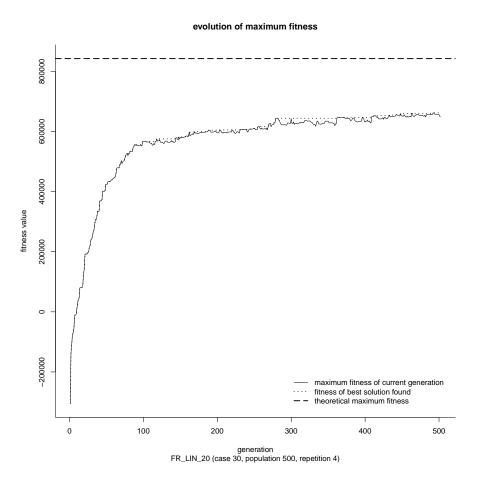


Fig. 80. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

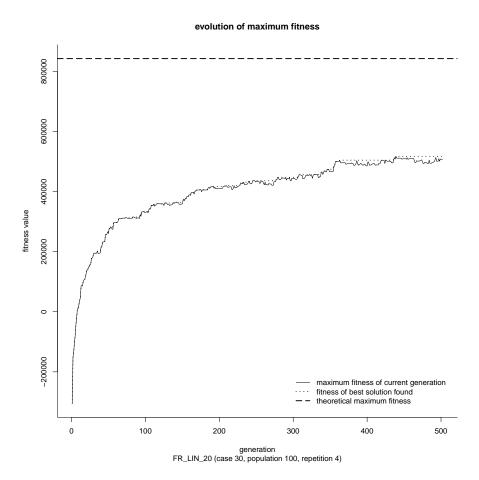


Fig. 81. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

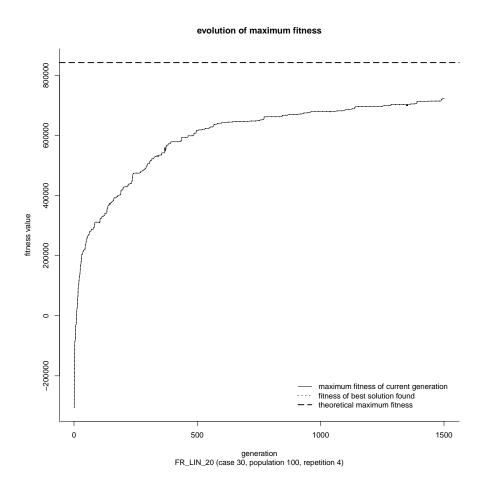


Fig. 82. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

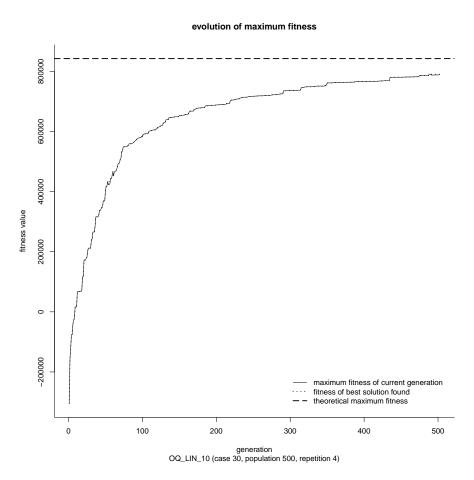


Fig. 83. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

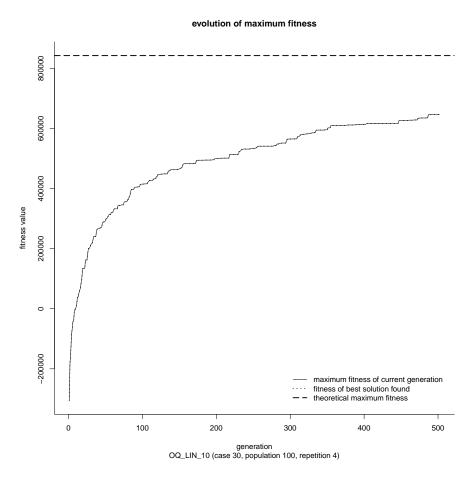


Fig. 84. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

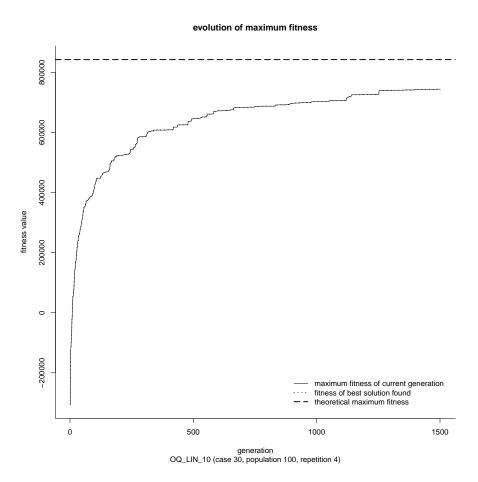


Fig. 85. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

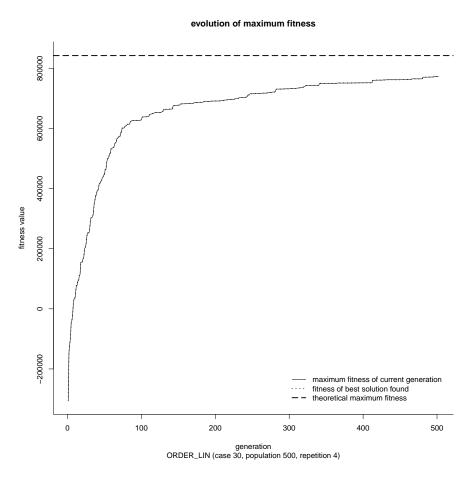


Fig. 86. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

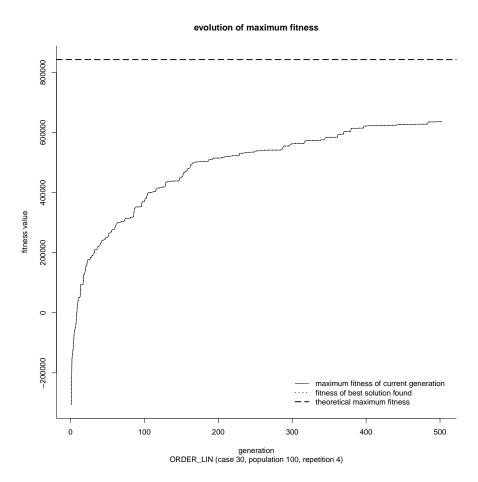


Fig. 87. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

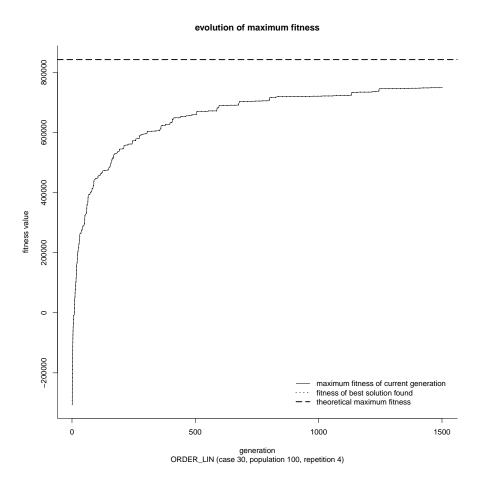


Fig. 88. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

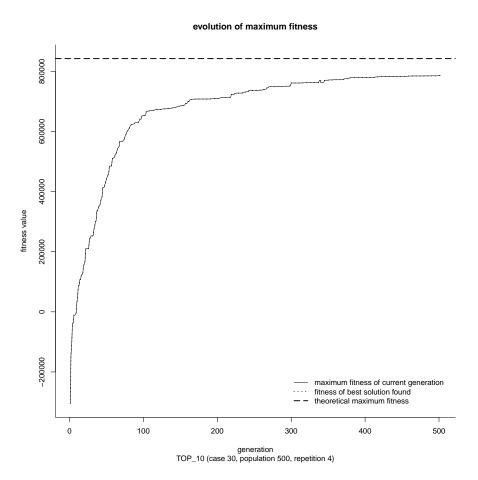


Fig. 89. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

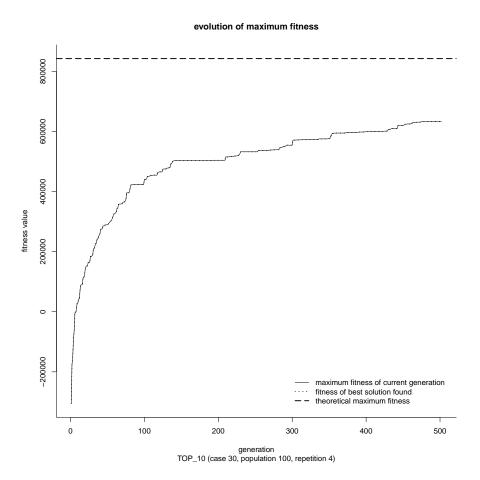


Fig. 90. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

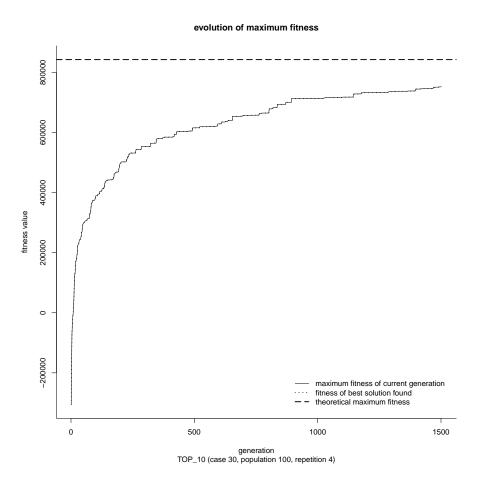


Fig. 91. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

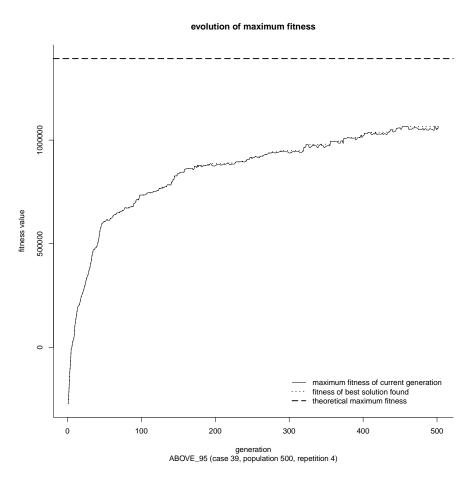


Fig. 92. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

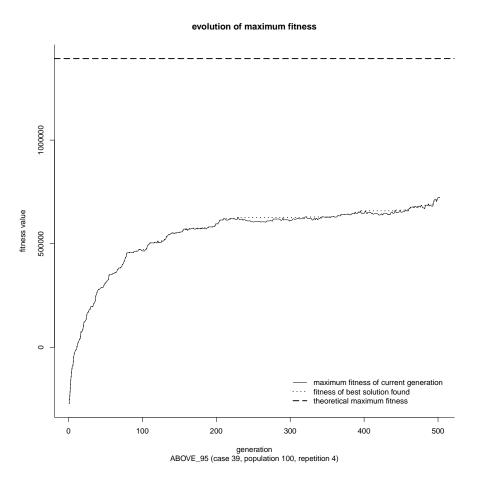


Fig. 93. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

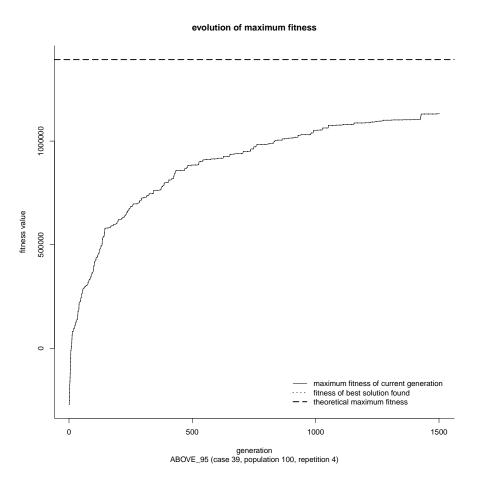


Fig. 94. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

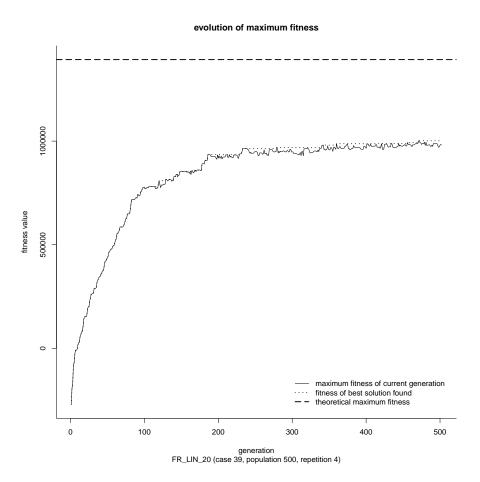


Fig. 95. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

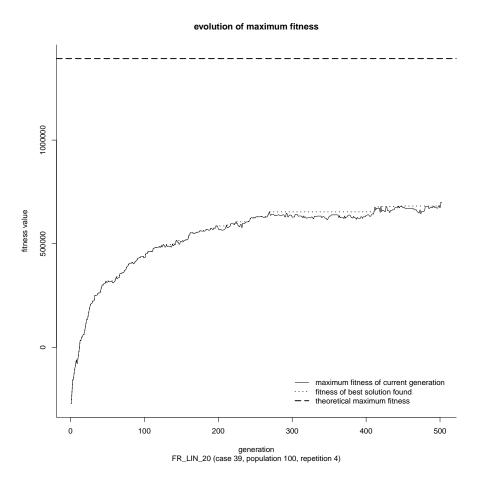


Fig. 96. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

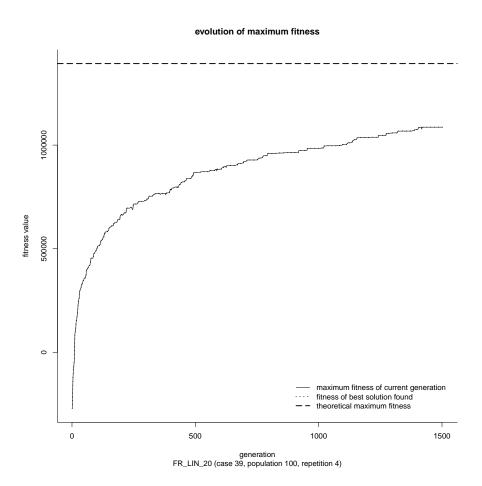


Fig. 97. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

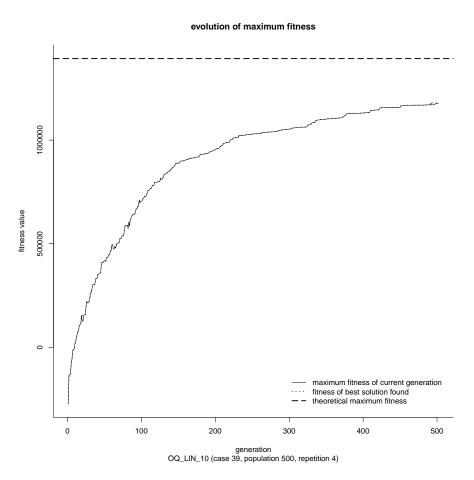


Fig. 98. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

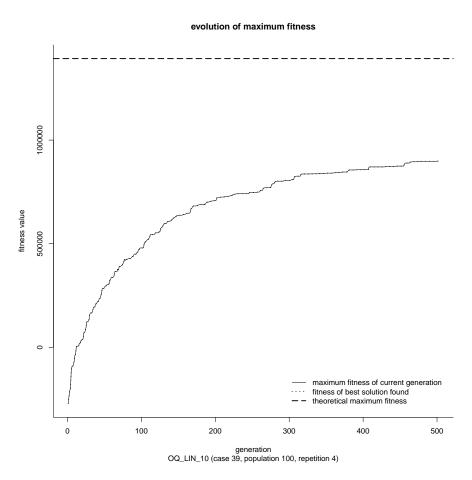


Fig. 99. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

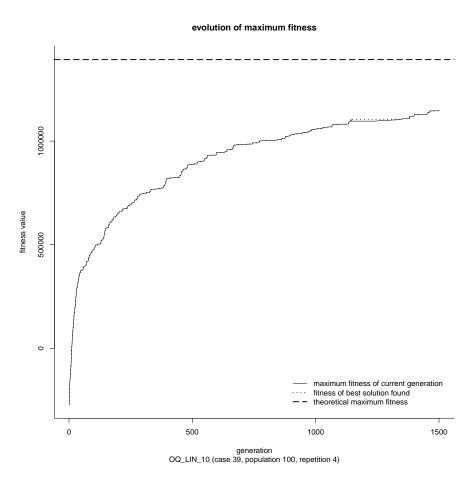


Fig. 100. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

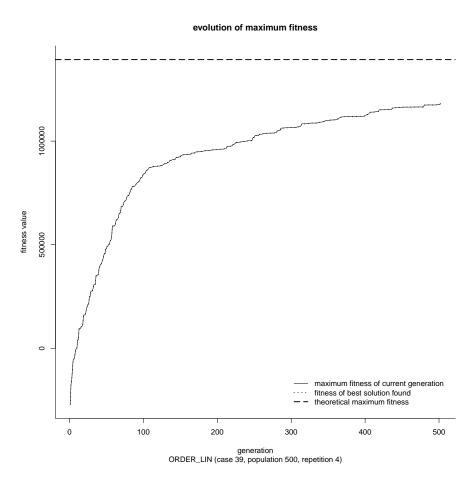


Fig. 101. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

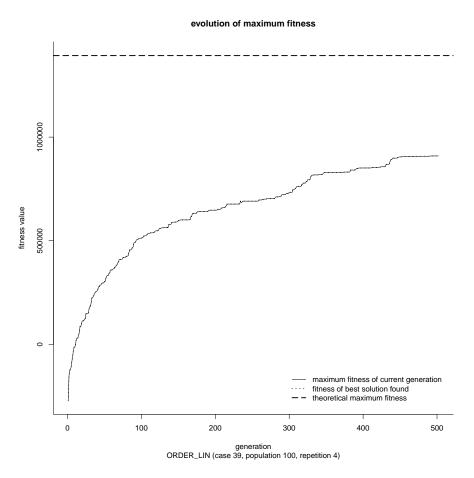


Fig. 102. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

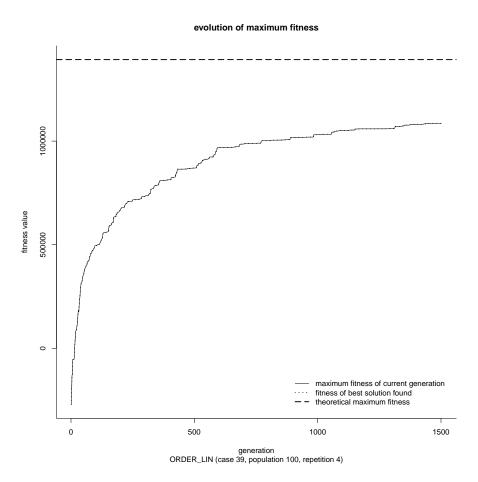


Fig. 103. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

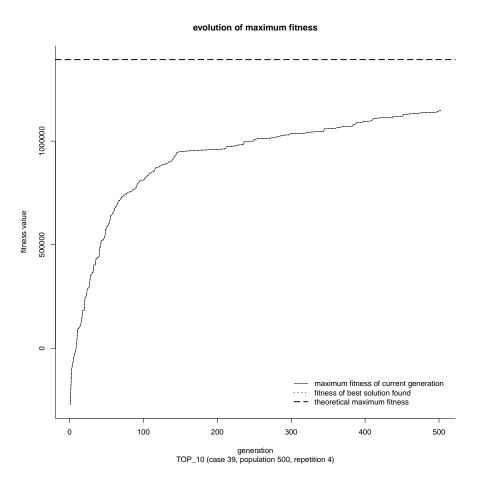


Fig. 104. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

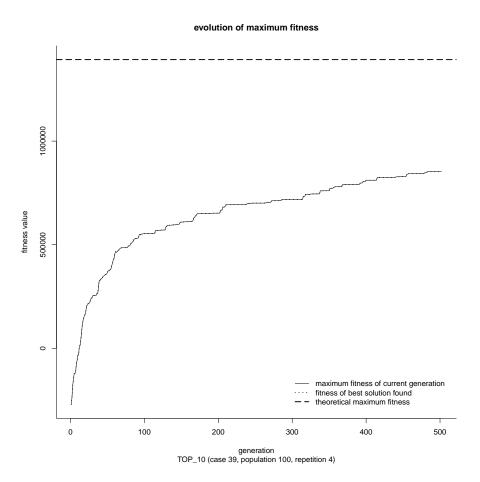


Fig. 105. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

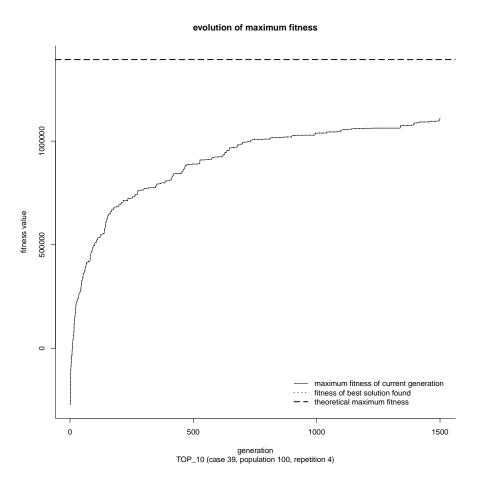


Fig. 106. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

2.5 Run 4

This run has been designed to evaluate the effect of deduplication on the results of the optimization. Therefore, all settings are identical to the third run (see 2.4), except that deduplication has not been activated in this run.

Table 147. Reached percentages of the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ABOVE_70				
	fit	ness va	lue	
,,,	pop	ulation	100	
case #	1500	genera	tions	
	avg	min	max	
28	89.14%	87.55%	90.61%	
29	87.81%	83.20%	89.94%	
30	85.92%	83.00%	88.64%	
31	84.97%	83.10%	87.03%	
32	87.24%	85.82%	88.22%	
33	86.83%	85.04%	88.82%	
34	86.54%	85.00%	88.58%	
35	85.72%	82.15%	89.73%	
36	87.88%	86.55%	89.78%	
37	85.60%	82.66%	88.35%	
38	76.39%	74.07%	77.98%	
39	74.22%	71.95%	78.54%	
40	78.44%	76.95%	81.23%	
41	75.58%	73.46%	78.05%	
42	74.24%	72.44%	77.85%	
43	76.41%	74.38%	79.29%	
44	75.77%	73.70%	79.59%	
45	74.98%	73.58%	77.55%	
46	76.34%	72.77%	79.34%	
47	77.63%	76.14%	78.33%	

Table 148. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ADOVE 70						
<u> </u>	ABOVE_70					
		po	pulat	ion	100	
$ _{\mathrm{case}}$ #		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	449	762	986	1248	-	-
29	604	874	1186	-	-	-
30	700	953	1291	-	-	-
31	709	1022	1314	-	-	-
32	636	927	1305	-	-	-
33	623	877	1257	-	-	-
34	623	916	1199	-	-	-
35	695	1000	1251	-	-	-
36	518	764	1119	-	-	-
	714		1286	-	-	-
38	1312	-	-	-	-	-
39	1348	-	-	-	-	-
40	1193	1398	-	-	-	-
41	1296	-	-	-	-	-
42	1242	-	-	-	-	-
43	1328	-	-	-	-	-
	1242		-	-	-	-
45	1377	-	-	-	-	-
	1266		-	-	-	-
47	1317	-	-	-	-	-

 $\textbf{Table 149.} \ \, \textbf{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.}$

ABO	OVE_70
	pop. 100
$ _{\rm case~\#}$	1500 gen.
	avg. time
28	16.88
29	16.45
30	16.47
31	16.52
32	16.39
33	16.27
34	16.43
35	16.51
36	16.55
37	16.48
38	30.59
39	31.27
40	30.86
41	30.51
42	30.68
43	30.56
44	30.86
45	30.83
46	30.63
47	30.96

 ${\bf Table~150.}~{\rm Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

	$ABOVE_80$				
	fitness value				
"	pop	ulation	100		
case #	1500	genera	tions		
	avg	min	max		
28	92.48%	91.40%	94.27%		
29	88.63%	85.97%	89.94%		
30	87.40%	85.79%	89.24%		
31	85.54%	84.10%	86.97%		
32	89.36%	87.20%	92.65%		
33	89.06%	84.79%	91.25%		
34	86.11%	83.88%	88.85%		
35	88.97%	88.15%	90.13%		
36	86.36%	84.87%	87.22%		
37	87.06%	85.56%	88.39%		
38	76.92%	76.09%	77.34%		
39	75.69%	73.79%	77.90%		
40	77.03%	74.96%	79.61%		
41	78.53%	75.48%	81.57%		
42	76.65%	75.09%	78.75%		
43	77.99%	75.56%	80.69%		
44	78.36%	77.61%	79.86%		
45	78.91%	75.96%	81.39%		
46	77.24%	73.25%	80.15%		
47	78.38%	75.42%	80.75%		
47	78.38%	75.42%	80.75%		

Table 151. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

	ABOVE 80					
		po	pulat	ion	100	
case #		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	412	608	755	1123	-	-
29	451	689	974	-	-	-
30	611	897	1267	-	-	-
31	658	934	1248	-	-	-
32	621	862	1124	1283	-	-
33	500	722	1125	1380	-	-
34	499	704	987	-	-	-
35	439	633	909	1353	-	-
36	474	756	1119	-	-	-
37	622	864	1270	-	-	-
38	1251	-	-	-	-	-
39	1413	-	-	-	-	-
40	1195	-	-	-	-	-
41	1241	1405	-	-	-	-
42	1295	-	-	-	-	-
43	1128	1326	-	-	-	-
44	1217	-	-	-	-	-
45	1087	1427	-	-	-	-
46	1165	1456	-	-	-	-
47	1128	1333	-	-	-	-

Table 152. Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.

ABO	ABOVE_80				
	pop. 100				
$ _{\mathrm{case}} \#$	$1500 { m \ gen.}$				
	avg. time				
28	26.41				
29	26.45				
30	26.41				
31	26.51				
32	26.52				
33	26.40				
34	26.36				
35	26.41				
36	26.31				
37	26.61				
38	52.61				
39	52.77				
40	52.85				
41	54.89				
42	53.71				
43	52.60				
44	52.89				
45	52.61				
46	52.49				
47	52.44				

 ${\bf Table~153.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

ABOVE_90					
	fitness value				
	pop	ulation	100		
case #	1500	genera	tions		
	avg	avg min			
28	90.64%	88.59%	91.70%		
29	87.82%	84.99%	88.90%		
30	85.27%	84.24%	86.50%		
31	83.50%	79.00%	87.95%		
32	86.72%	84.92%	88.22%		
33	88.01%	86.33%	91.83%		
34	85.72%	82.06%	87.78%		
35	87.15%	85.25%	88.61%		
36	86.00%	84.77%	86.97%		
37	85.96%	81.47%	88.89%		
38	75.85%	74.76%	76.81%		
39	75.05%	73.89%	77.13%		
40	76.68%	74.90%	79.23%		
41	75.04%	71.44%	77.67%		
42	76.36%	74.29%	77.27%		
43	75.54%	74.09%	78.86%		
44	75.51%	73.49%	76.94%		
45	74.63%	72.72%	76.65%		
46	73.58%	70.37%	77.18%		
47	78.78%	76.15%	81.18%		

Table 154. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ABOVE_90						
		population 100				
$ _{\mathrm{case}} \#$		150	0 ger	nerat	ions	
	75%	80%	85%	90%	95%	100%
28	446	614	854	1246	-	-
29	604	822	1145	-	-	-
30	680	970	1328	-	-	-
31	757	1147	1207	-	-	-
32	565	824	1275	-	-	-
33	584	835	1191	1384	-	-
34	689	986	1318	-	-	-
35	595	836	1210	-	-	-
36	604	886	1302	-	-	-
37	615	927	1258	-	-	-
38	1340	-	-	-	-	-
39	1307	-	-	-	-	-
40	1193	-	-	-	-	-
41	1271	-	-	-	-	-
42	1352	-	-	-	-	-
43	1171	-	-	-	-	-
44	1305	-	-	-	-	-
45	1268	-	-	-	-	-
46	1279	-	-	-	-	-
47	1228	1452	-	-	-	-

 $\textbf{Table 155.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.}$

ABO	ABOVE_90				
	pop. 100				
$ _{\mathrm{case}} \#$	1500 gen.				
	avg. time				
28	16.67				
29	16.29				
30	16.14				
31	16.26				
32	16.38				
33	16.26				
34	16.20				
35	16.14				
36	16.19				
37	16.28				
38	30.40				
39	30.45				
40	30.45				
41	30.48				
42	30.82				
43	31.10				
44	31.17				
45	30.76				
46	31.08				
47	30.59				

 ${\bf Table~156.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

	ABOVE_95				
	fitness value				
	pop	ulation	100		
case #	1500	genera	tions		
	avg	min	max		
28	90.56%	88.24%	92.52%		
29	88.21%	85.14%	91.57%		
30	84.87%	83.39%	86.09%		
31	87.07%	85.38%	89.56%		
32	87.43%	86.62%	89.20%		
33	86.31%	83.81%	88.81%		
34	86.57%	81.88%	89.02%		
35	88.62%	85.48%	91.58%		
36	88.16%	84.24%	90.38%		
37	86.76%	83.96%	88.68%		
38	75.84%	73.60%	78.61%		
39	74.23%	72.67%	75.98%		
40	75.72%	74.09%	76.83%		
1	77.01%		79.69%		
42	74.55%		75.60%		
43	74.47%	70.63%	77.56%		
44	76.34%	75.70%	77.59%		
45	76.60%	74.86%	78.08%		
46	74.55%	72.75%	76.29%		
47	78.18%	75.78%	81.42%		

Table 157. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ABOVE_95						
		po	pulat	ion	100	
$ _{\mathrm{case}\;\#}$		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	434	597	862	1260	-	-
29	616	823	1214	1456	-	-
30	667	943	1378	-	-	-
31	725	932	1317	-	-	-
32	609	797	1215	-	-	-
	625				-	-
34	547	837	1091	-	-	-
35	632	855	1169	1114	-	-
36	532	780	1110	1410	-	-
37	581	835	1328	-	-	-
38	1262	-	-	-	-	-
39	1397	-	-	-	-	-
40	1360	-	-	-	-	-
41	1353	-	-	-	-	-
42	1438	-	-	-	-	-
1	1270		-	-	-	-
44	1341	-	-	-	-	-
45	1220	-	-	-	-	-
	1411		-	-	-	-
47	1220	1415	-	-	-	-

 $\textbf{Table 158.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

ABO	ABOVE_95				
	pop. 100				
case #	1500 gen.				
	avg. time				
28	16.31				
29	16.20				
30	16.25				
31	16.11				
32	16.10				
33	16.21				
34	16.39				
35	16.70				
36	16.51				
37	16.35				
38	31.88				
39	31.29				
40	31.46				
41	31.29				
42	31.24				
43	30.99				
44	30.51				
45	31.04				
46	31.21				
47	31.34				

 ${\bf Table~159.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

FR_LIN_5			
	fit	ness va	lue
,,	pop	ulation	100
case #	1500	genera	tions
	avg	min	max
28	89.40%	87.14%	91.15%
29	88.93%	86.55%	91.43%
30	86.17%	83.45%	89.98%
31	84.37%	82.86%	86.54%
32	88.26%	86.23%	90.12%
33	87.03%	85.12%	91.48%
34	86.39%	85.64%	87.31%
35	87.04%	86.47%	87.94%
36	87.36%	86.05%	89.31%
37	86.22%	82.73%	87.52%
38	75.91%	74.22%	77.96%
39	75.10%	73.26%	77.89%
40	75.38%	74.39%	78.12%
41	76.66%	74.62%	79.74%
	76.45%	74.14%	78.01%
43	76.84%	74.16%	79.64%
	75.34%		77.31%
	76.16%		79.08%
		72.53%	77.06%
47	78.11%	76.86%	78.89%

Table 160. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

		FR_	LIN	_5		
		population 100				
$ _{\mathrm{case}~\#}$		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	449	665	939	1455	-	-
29	544	788	1115	1449	-	-
30	673	966	1189	-	-	-
31	702	1027	1320	-	-	-
32	553	720	1019	1481	-	-
33	580	820	1297	1290	-	-
34	586	848	1347	-	-	-
35	619	841	1215	-	-	-
	574				-	-
37	618	887	1233	-	-	-
38	1358	-	-	-	-	-
	1312		-	-	-	-
	1390		-	-	-	-
	1302		-	-	-	-
	1236		-	-	-	-
_	1102		-	-	-	-
	1332		-	-	-	-
	1242		-	-	-	-
_	1400		-	-	-	-
47	1205	-	-	-	-	-

 $\textbf{Table 161.} \ \, \textbf{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.}$

FR	_LIN_5
	pop. 100
$ _{\mathrm{case}} \#$	$1500 { m \ gen.}$
	avg. time
28	25.63
29	25.25
30	25.48
31	25.36
32	25.28
33	25.27
34	25.25
35	25.35
36	25.34
37	25.39
38	51.54
39	51.02
40	51.18
41	50.67
42	51.96
43	50.57
44	50.42
45	51.30
46	50.76
47	50.54

 ${\bf Table~162.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

FR_LIN_7					
	fitness value				
	pop	ulation	100		
case #	1500	genera	tions		
	avg	min	max		
28	89.86%	88.47%	91.85%		
29	86.27%	83.20%	88.68%		
30	88.81%	86.03%	92.14%		
31	84.88%	80.73%	89.21%		
32	87.90%	86.23%	90.67%		
33	86.18%	84.65%	89.54%		
34	87.87%	84.58%	90.76%		
35	87.05%	83.37%	90.78%		
36	88.75%	86.19%	91.05%		
37	85.10%	82.59%	88.13%		
38	76.41%	74.88%	79.10%		
39	74.67%	73.37%	76.80%		
40	77.58%	74.94%	81.10%		
41	76.77%	72.37%	78.91%		
42	76.70%	73.63%	80.43%		
43	75.87%	73.89%	78.24%		
44	75.53%	73.48%	78.21%		
45	75.05%	71.24%	78.09%		
		74.99%			
47	78.36%	77.11%	79.35%		

Table 163. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

FR_LIN_7							
		population 100					
$ _{\mathrm{case}} \#$		150	0 ger	ıerat	ions		
	75%	80%	85%	90%	95%	100%	
28	406	583	867	1213	-	-	
29	620	888	1082	-	-	-	
30	646	836	1112	1389	-	-	
31	725	1049	1332	-	-	-	
32	535	777	1170	1442	-	-	
33	664	1004	1274	-	-	-	
34	588	729	960	1487	-	-	
35	649	890	1246	1466	-	-	
36	516	684	1038	1321	-	-	
37	682	965	1291	-	-	-	
38	1175	-	-	-	-	-	
39	1346	-	-	-	-	-	
40	1225	1387	-	-	-	-	
41	1222	-	-	-	-	-	
42	1303	1444	-	-	-	-	
43	1338	-	-	-	-	-	
44	1352	-	-	-	-	-	
45	1313	-	-	-	-	-	
	1326		-	-	-	-	
47	1122	-	-	-	-	-	

 $\textbf{Table 164.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

FR	_LIN_7
	pop. 100
$ _{\mathrm{case}\;\#}$	1500 gen.
	avg. time
28	25.30
29	25.81
30	25.65
31	25.32
32	25.31
33	25.81
34	25.71
35	25.57
36	26.27
37	25.20
38	50.90
39	50.50
40	50.55
41	50.48
42	50.84
43	51.39
44	52.38
45	50.89
46	50.67
47	50.85

 ${\bf Table~165.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

	FR_LIN_10					
	fitness value					
ļ "	pop	ulation	100			
case #	1500	genera	tions			
	avg	min	max			
28	90.03%	88.60%	92.41%			
29	87.11%	85.17%	90.67%			
30	86.68%	85.26%	89.01%			
31	84.60%	79.80%	86.85%			
32	87.62%	85.55%	89.03%			
33	89.62%	85.82%	93.75%			
34	84.88%	81.93%	86.26%			
35	85.39%	82.71%	88.05%			
36	87.27%	86.17%	89.20%			
37	87.81%	86.43%	88.70%			
38	75.62%	73.49%	77.55%			
39	75.09%	73.41%	76.38%			
40	76.90%	75.35%	77.74%			
41	74.94%	70.85%	78.45%			
42	76.46%	73.67%	79.14%			
43	76.27%	74.80%	77.93%			
44	76.17%	73.25%	79.81%			
45	77.02%	74.68%	79.38%			
46	75.45%	71.46%	79.25%			
47	78.65%	75.39%	81.40%			

Table 166. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

		FR_	LIN_	_10		
		po	pulat	ion	100	
$ _{\mathrm{case}\;\#}$		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	446	600	889	1293	-	-
29	605	795	1131	1359	-	-
30	644	848	1214	-	-	-
31	681	920	1316	-	-	-
32	548	803	1249	-	-	-
33	550	799	1076	1150	-	-
34	616	970	1280	-	-	-
35	601	873	1250	-	-	-
36	548	840	1291	-	-	-
37	605	863	1166	-	-	-
38	1398	-	-	-	-	-
39	1383	-	-	-	-	-
40	1285	-	-	-	-	-
41	1213	-	-	-	-	-
42	1197	-	-	-	-	-
43	1367	-	-	-	-	-
44	1274	-	-	-	-	-
45	1289	-	-	-	-	-
46	1291	-	-	-	-	-
47	1160	1398	-	-	-	-

 $\textbf{Table 167.} \ \, \textbf{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.}$

FR_	_LIN10
	pop. 100
$ _{\rm case~\#}$	1500 gen.
	avg. time
28	25.83
29	25.33
30	25.32
31	25.68
32	26.37
33	25.84
34	25.79
35	25.36
36	25.38
37	25.37
38	50.91
39	51.46
40	50.59
41	50.58
42	51.54
43	52.74
44	52.60
45	51.67
46	51.94
47	52.53

 ${\bf Table~168.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

FR_LIN_20				
	fit	ness va	lue	
	pop	ulation	100	
case #	1500	genera	tions	
	avg	min	max	
28	91.88%	89.83%	93.69%	
29	88.77%	87.83%	91.26%	
30	84.85%	80.25%	89.49%	
31	85.20%	83.55%	86.68%	
32	86.47%	85.03%	88.42%	
33	87.26%	85.41%	90.03%	
34	87.81%	87.07%	88.77%	
35	86.85%	85.97%	87.87%	
36	87.03%	84.95%	90.64%	
37	87.94%	84.29%	90.58%	
38	75.37%	73.22%	78.50%	
39	74.39%	71.65%	76.77%	
40	76.84%	75.14%	77.94%	
41	75.95%	72.54%	78.00%	
42	75.56%	72.44%	77.39%	
43	75.82%	72.41%	80.59%	
44	77.08%	75.45%	81.37%	
45	76.37%	73.92%	78.75%	
	75.33%	72.65%	76.12%	
47	78.58%	76.43%	79.67%	

Table 169. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

		FR_	LIN	20		
		po	pulat	ion	100	
case #		150	0 ger	ıerat	ions	
		80%	85%	90%	95%	100%
28	427	571	778	1084	-	-
29	566	839	1122	1370	-	-
30	678	1028	1323	-	-	-
31	649	964	1323	-	-	-
32	636	836	1278	-	-	-
33	643	859	1253	1457	-	-
34	578	842	1152	-	-	-
35	619	933	1323	-	-	-
36	536	840	1120	1377	-	-
37	661	852	1136	1464	-	-
38	1316	-	-	-	-	-
39	1374	-	-	-	-	-
40	1329	-	-	-	-	-
41	1289	-	-	-	-	-
42	1352	-	-	-	-	-
43	1295	1446	-	-	-	-
44	1253	1339	-	-	-	-
45	1305	-	-	-	-	-
46	1367	-	-	-	-	-
47	1203	-	-	-	-	-

 $\textbf{Table 170.} \ \ \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.$

FR_	LIN_20
	pop. 100
$ _{\mathrm{case}\;\#}$	1500 gen.
	avg. time
28	25.75
29	25.45
30	25.51
31	26.15
32	25.84
33	25.64
34	25.46
35	25.39
36	25.42
37	25.51
38	51.87
39	51.11
40	51.51
41	51.31
42	50.62
43	51.64
44	52.73
45	50.64
46	50.84
47	50.51

 ${\bf Table~171.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

ORDER_LIN						
	fitness value					
	population 100					
case #	1500	genera	tions			
	avg	min	max			
28	91.75%	89.98%	93.62%			
29	87.31%	84.70%	88.44%			
30	85.11%	83.30%	87.64%			
31	83.54%	81.15%	85.83%			
32	86.78%	84.79%	89.03%			
33	86.70%	84.99%	88.11%			
34	86.95%	84.78%	89.60%			
35	87.13%	84.15%	89.96%			
36	87.98%	85.70%	91.30%			
37	87.05%	84.43%	89.65%			
38	75.41%	73.46%	77.13%			
39	73.29%	71.91%	75.24%			
40	77.92%	74.40%	82.09%			
41	77.20%	74.92%	79.87%			
42	76.69%	75.94%	77.12%			
43	76.17%	73.07%	78.05%			
44	75.76%	74.52%	76.81%			
1	74.90%	73.96%	75.57%			
46	75.49%	73.43%	78.51%			
47	78.46%	75.23%	81.83%			

Table 172. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ORDER_LIN							
	population 100						
$ _{\mathrm{case}} \#$	1500 generations						
		80%	85%	90%	95%	100%	
28	348	499	710	1159	-	-	
29	564	752	1137	-	-	-	
30	729	979	1106	-	-	-	
31		1065			-	-	
32		847			-	-	
33		869	1228	-	-	-	
34	562	809	1291	-	-	-	
35	618	819	1190	-	-	-	
36	568	859	1150	1270	-	-	
37	549	849	1278	-	-	-	
38	1320	-	-	-	-	-	
39	1460	-	-	-	-	-	
40	1128	1344	-	-	-	-	
41	1225	-	-	-	-	-	
42	1273	-	-	-	-	-	
43	1293	-	-	-	-	-	
44	1383	-	-	-	-	-	
45	1471	-	-	-	-	-	
46	1269	-	-	-	-	-	
47	1147	1181	-	-	-	-	

 $\textbf{Table 173.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds. } \\$

ORD	ORDER_LIN					
	pop. 100					
case #	1500 gen.					
	avg. time					
28	16.24					
29	16.07					
30	16.06					
31	16.07					
32	16.19					
33	16.23					
34	16.14					
35	16.22					
36	16.48					
37	16.19					
38	30.38					
39	30.27					
40	30.32					
41	30.23					
42	30.24					
43	30.47					
44	30.66					
45	30.47					
46	30.39					
47	30.60					

 ${\bf Table~174.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

ORDER_LOG						
	fitness value					
"	pop	ulation	100			
case #	1500 generations					
	avg	min	max			
28	90.75%	87.59%	93.25%			
29	88.32%	87.86%	88.77%			
30	85.93%	85.63%	86.28%			
31	84.99%	81.16%	87.73%			
32	87.92%	85.30%	89.25%			
33	86.68%	85.12%	87.54%			
34	86.79%	85.89%	89.05%			
35	87.97%	82.59%	90.90%			
36	87.14%	85.35%	88.66%			
37	87.02%	84.72%	88.74%			
38	78.37%	77.31%	79.79%			
39	74.77%	72.27%	77.26%			
40	76.05%	71.10%	78.27%			
41	76.28%	73.25%	78.38%			
42	75.73%	72.35%	78.98%			
43	76.26%	72.32%	78.84%			
44	75.86%	71.11%	79.37%			
45	78.32%	75.51%	81.23%			
46	76.21%	74.52%	77.90%			
47	79.20%	76.92%	81.26%			

Table 175. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

ORDER_LOG						
	population 100					
$ _{\mathrm{case}} \#$	1500 generations					
	75%	80%	85%	90%	95%	100%
28	385	548	883	1234	-	-
29	545	749	1092	-	-	-
30	656	880	1311	-	-	-
31	607	942	1145	-	-	-
32	616	819	1118	-	-	-
33	653	890	1262	-	-	-
34	557	830	1218	-	-	-
35	574	778	962	1362	-	-
36	487	637	1055	-	-	-
37	682	910	1232	-	-	-
38	1167	-	-	-	-	-
39	1285	-	-	-	-	-
40	1275	-	-	-	-	-
41	1300	-	-	-	-	-
42	1255	-	-	-	-	-
43	1195	-	-	-	-	-
44	1170	-	-	-	-	-
45	1214	1437	-	-	-	-
46	1334	-	-	-	-	-
47	1109	1376	-	-	-	-

Table 176. Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.

ORDER_LOG				
	pop. 100			
$ _{\mathrm{case}} \#$	1500 gen.			
	avg. time			
28	16.19			
29	16.28			
30	16.44			
31	16.56			
32	16.46			
33	16.61			
34	16.53			
35	16.77			
36	16.50			
37	16.29			
38	30.30			
39	30.19			
40	30.38			
41	30.46			
42	31.02			
43	30.32			
44	30.48			
45	30.48			
46	30.98			
47	30.30			

 ${\bf Table~177.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

OQ_LIN_5						
	fitness value					
	pop	ulation	100			
case #	1500 generations					
	avg	min	max			
28	88.85%	87.80%	89.68%			
29	86.85%	82.02%	90.62%			
30	84.62%	82.70%	86.13%			
31	84.17%	83.07%	85.48%			
32	87.07%	84.50%	88.99%			
33	86.06%	83.67%	88.73%			
34	86.51%	83.59%	90.01%			
35	87.06%	85.73%	88.32%			
36	87.86%	85.62%	89.01%			
37	87.77%	86.76%	89.21%			
38	75.54%	72.80%	78.03%			
39	74.54%	71.87%	77.68%			
40	76.43%	74.87%	78.08%			
41	76.89%	76.53%	77.98%			
42	75.67%	73.66%	78.73%			
43	76.04%	74.71%	77.30%			
44	77.62%	71.59%	82.99%			
45	76.22%	74.03%	78.32%			
46	74.26%	72.51%	77.02%			
47	78.01%	76.69%	78.60%			

Table 178. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

OQ LIN 5							
	population 100						
$ _{\text{case }\#}$	1500 generations						
		80%	85%	90%	95%	100%	
28	382	608	1009	-	-	-	
29	626	938	924	1384	-	-	
30	716	1020	1337	-	-	-	
31	726	1017	1384	-	-	-	
32	636	872	1070	-	-	-	
33	684	942	1153	-	-	-	
34	618	870	1263	1495	-	-	
35	653	904	1289	-	-	-	
36	549	817	1186	-	-	-	
37	617	817	1188	-	-	-	
38	1183	-	-	-	-	-	
39	1309	-	-	-	-	-	
	1304		-	-	-	-	
	1317		-	-	-	-	
	1201		-	-	-	-	
43	1368	-	-	-	-	-	
44	1157	1325	-	-	-	-	
45	1205	-	-	-	-	-	
46	1365	-	-	-	-	-	
47	1150	-	-	-	-	-	

 $\textbf{Table 179.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

OQ	LIN_5
	pop. 100
$ _{\mathrm{case}} \#$	1500 gen.
	avg. time
28	16.69
29	16.65
30	16.69
31	16.60
32	16.52
33	16.23
34	16.19
35	16.11
36	16.19
37	16.19
38	30.34
39	30.19
40	30.31
41	30.43
42	30.94
43	30.40
44	30.48
45	30.23
46	30.29
47	30.23

 ${\bf Table~180.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

$ \begin{array}{ c c c c c c c c c } \hline OQ_LIN_7 \\ \hline & fitness value \\ \hline & population 100 \\ \hline & 1500 \ generations \\ avg & min & max \\ \hline & 28 & 88.75\% & 86.62\% & 90.35\% \\ 29 & 86.97\% & 83.40\% & 91.18\% \\ 30 & 85.34\% & 82.51\% & 89.28\% \\ 31 & 84.61\% & 82.79\% & 87.85\% \\ 32 & 87.81\% & 86.06\% & 90.23\% \\ 33 & 87.24\% & 85.22\% & 89.91\% \\ 34 & 87.60\% & 85.57\% & 90.39\% \\ 35 & 87.30\% & 85.15\% & 90.30\% \\ 36 & 85.91\% & 84.85\% & 87.86\% \\ \hline \end{array} $
$\begin{array}{ c c c c c c c c c } \hline \textbf{population 100} \\ \hline \textbf{1500 generations} \\ \textbf{avg} & min & max \\ \hline & & & & & & & & & & & & & & \\ \hline \textbf{1500 generations} \\ \textbf{avg} & min & max \\ \hline & & & & & & & & & & & \\ \hline \textbf{28} & 88.75\% & 86.62\% & 90.35\% \\ \textbf{29} & 86.97\% & 83.40\% & 91.18\% \\ \textbf{30} & 85.34\% & 82.51\% & 89.28\% \\ \textbf{31} & 84.61\% & 82.79\% & 87.85\% \\ \textbf{32} & 87.81\% & 86.06\% & 90.23\% \\ \textbf{33} & 87.24\% & 85.22\% & 89.91\% \\ \textbf{34} & 87.60\% & 85.57\% & 90.39\% \\ \textbf{35} & 87.30\% & 85.15\% & 90.30\% \\ \hline \end{array}$
1500 generations avg min max 28 88.75% 86.62% 90.35% 29 86.97% 83.40% 91.18% 30 85.34% 82.51% 89.28% 31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.30% 35 87.30% 85.15% 90.30%
1500 generations avg min max 28 88.75% 86.62% 90.35% 29 86.97% 83.40% 91.18% 30 85.34% 82.51% 89.28% 31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
28 88.75% 86.62% 90.35% 29 86.97% 83.40% 91.18% 30 85.34% 82.51% 89.28% 31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
29 86.97% 83.40% 91.18% 30 85.34% 82.51% 89.28% 31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
30 85.34% 82.51% 89.28% 31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
31 84.61% 82.79% 87.85% 32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
32 87.81% 86.06% 90.23% 33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
33 87.24% 85.22% 89.91% 34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
34 87.60% 85.57% 90.39% 35 87.30% 85.15% 90.30%
35 87.30% 85.15% 90.30%
33 37.337,0 33.237,0 33.337,0
36 85.91% 84.85% 87.86%
00,001/0 04.00/0 01.00/0
37 87.49% 84.23% 89.90%
38 74.56% 70.97% 77.07%
39 73.45% 72.41% 74.77%
40 76.43% 74.75% 78.87%
41 75.53% 71.82% 79.78%
42 75.62% 73.94% 78.95%
43 75.84% 73.01% 78.24%
44 <mark>73.89% 72.11%</mark> 75.81%
45 75.64% 73.93% 78.49%
46 <mark>74.93% 71.91%</mark> 77.58%
47 78.94% 77.53% 80.42%

Table 181. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

OQ_LIN_7								
		population 100						
$ _{\mathrm{case}}$ #		150	0 ger	ıerat	ions			
	75%	80%	85%	90%	95%	100%		
28	404	635	1046	1455	-	-		
29	568	811	1057	1347	-	-		
30	737	969	1317	-	-	-		
31	786	1119	1380	-	-	-		
32	550	777	1097	1403	-	-		
33	551	765	1186	-	-	-		
34	630	821	1208	1293	-	-		
35	646	888	1312	1498	-	-		
36	501	824	1289	-	-	-		
37	678	880	1135	-	-	-		
38	1331	-	-	-	-	-		
39	-	-	-	-	-	-		
40	1308	-	-	-	-	-		
41	1193	-	-	-	-	-		
42	1226	-	-	-	-	-		
43	1187	-	-	-	-	-		
44	1372	-	-	-	-	-		
45	1377	-	-	-	-	-		
46	1375	-	-	-	-	-		
47	1192	1466	-	-	-	-		

Table 182. Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.

OQ	_LIN_7
	pop. 100
$ _{\rm case~\#}$	$1500 { m \ gen.}$
	avg. time
28	16.22
29	16.32
30	16.01
31	16.34
32	16.25
33	16.12
34	16.18
35	16.10
36	16.12
37	16.58
38	30.64
39	30.41
40	30.76
41	30.63
42	30.59
43	31.30
44	30.72
45	30.28
46	30.67
47	31.00

 ${\bf Table~183.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

OQ_LIN_10								
	fitness value							
"	pop	ulation	100					
case #	1500	genera	tions					
	avg	min	max					
28	89.91%	87.28%	92.53%					
29	87.58%	86.65%	89.33%					
30	85.22%	83.58%	87.37%					
31	83.83%	82.33%	86.12%					
32	86.36%	84.56%	90.05%					
33	86.49%	85.08%	88.34%					
34	86.79%	84.24%	89.09%					
35	86.91%	84.18%	88.45%					
36	86.34%	85.81%	87.16%					
37	86.89%	84.65%	88.78%					
38	75.75%	72.71%	78.59%					
39	74.61%	73.26%	76.78%					
40	76.98%	73.90%	81.60%					
41	76.13%	74.61%	78.68%					
42	75.91%	72.24%	77.44%					
43	76.36%	73.64%	78.14%					
44	75.59%	73.31%	78.66%					
45	75.86%	72.81%	79.20%					
46	75.75%	73.09%	76.89%					
47	78.24%	75.39%	81.79%					

Table 184. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

OQ LIN 10							
	population 100						
		150	0 ger	nerat	ions		
case #						100%	
28	413	586	954	1305			
29		725			_	_	
30	718				_	-	
31	778	1064	1113	-	-	-	
32	652	851	1288	1467	-	-	
33	637	945	1305	-	-	-	
34	555	826	1104	-	-	-	
	652				-	-	
36	527	793	1195	-	-	-	
1	742		1228	-	-	-	
	1216		-	-	-	-	
	1405		-	-	-	-	
!	1262		-	-	-	-	
	1363		-	-	-	-	
	1269		-	-	-	-	
	1297		-	-	-	-	
	1291		-	-	-	-	
	1248		-	-	-	-	
1	1352		-	-	-	-	
47	1138	1446	-	-	-	-	

 $\textbf{Table 185.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments.} \ \text{The average time is displayed as seconds.}$

OQ_	_LIN10
	pop. 100
case #	1500 gen.
	avg. time
28	16.78
29	16.55
30	16.67
31	16.61
32	16.21
33	16.16
34	16.16
35	16.23
36	16.29
37	16.44
38	30.41
39	30.77
40	31.15
41	30.94
42	30.41
43	30.60
44	30.59
45	30.40
46	31.32
47	31.43

 ${\bf Table~186.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

TOP_10							
	fitness value						
"	pop	ulation	100				
case #	1500	genera	tions				
	avg	min	max				
28	90.33%	88.59%	91.76%				
29	88.07%	86.38%	90.35%				
30	85.04%	82.83%	86.30%				
31	83.84%	81.27%	86.76%				
32	85.45%	84.16%	87.20%				
33	87.58%	85.66%	89.52%				
34	87.02%	83.44%	90.37%				
35	86.69%	83.73%	89.65%				
36	87.45%	86.10%	89.71%				
37	87.88%	83.36%	92.91%				
38	75.52%	72.57%	77.89%				
39	73.76%	72.21%	76.33%				
40	76.92%	74.19%	79.08%				
41	76.05%	75.21%	77.59%				
42	76.43%	75.29%	77.83%				
43	74.73%	70.53%	77.36%				
44	76.10%	74.05%	80.34%				
45	75.63%	70.60%	78.33%				
46	74.29%	72.92%	75.44%				
47	77.19%	75.67%	78.93%				

Table 187. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

TOP_10								
		population 100						
$ _{\mathrm{case}}$ #		1500 generations						
	75%	80%	85%	90%	95%	100%		
28	460	619	903	1286	-	-		
29	568	753	1127	1447	-	-		
30	714	957	1423	-	-	-		
31	763	1105	1328	-	-	-		
32	560	861	1118	-	-	-		
33	608	878	1233	-	-	-		
34	561	826	1089	1329	-	-		
35	700	949	1223	-	-	-		
36	590	768	1159	-	-	-		
37	625	867	1138	1144	-	-		
38	1280	-	-	-	-	-		
39	1347	-	-	-	-	-		
40	1225	-	-	-	-	-		
41	1395	-	-	-	-	-		
42	1397	-	-	-	-	-		
43	1323	-	-	-	-	-		
44	1226	1399	-	-	-	-		
45	1373	-	-	-	-	-		
46	1441	-	-	-	-	-		
47	1261	-	-	-	-	-		

 $\textbf{Table 188.} \ \, \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments.} \ \, \text{The average time is displayed as seconds.}$

TOP_10				
	pop. 100			
case #	1500 gen.			
	avg. time			
28	16.44			
29	15.98			
30	16.01			
31	16.05			
32	16.03			
33	15.97			
34	16.10			
35	16.03			
36	16.00			
37	16.00			
38	30.08			
39	30.39			
40	31.16			
41	30.61			
42	30.37			
43	30.01			
44	30.06			
45	29.81			
46	30.05			
47	29.97			

 ${\bf Table~189.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

TOP_20							
	fitness value						
	pop	ulation	100				
case #	1500	genera	tions				
	avg	min	max				
28	88.88%	85.42%	91.94%				
29	87.36%	83.82%	89.69%				
30	84.74%	83.13%	85.97%				
31	85.42%	84.00%	88.04%				
32	87.45%	85.53%	88.59%				
33	86.15%	84.41%	87.77%				
34	87.53%	84.35%	89.82%				
35	86.45%	83.03%	89.63%				
36	86.51%	83.87%	89.99%				
37	86.89%	82.56%	89.64%				
38	75.37%	72.14%	78.73%				
39	74.49%	72.28%	77.47%				
40	76.15%	74.56%	78.29%				
41	75.10%	73.32%	77.62%				
42	76.09%	74.66%	78.99%				
43	77.49%	75.36%	80.08%				
44	74.67%	73.11%	76.20%				
45	73.45%	69.83%	75.51%				
46	74.22%	70.05%	78.56%				
47	77.42%	75.49%	79.04%				

Table 190. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

TOP 20								
	population 100							
İ ,,		1500 generations						
case #						100%		
	1070	8070	0070	9070	9070	10070		
28	468	695	1013	1158	-	-		
29	681	934	1221	-	-	-		
30	740	1136	1395	-	-	-		
31	685	973	1302	-	-	-		
32	611	955	1306	-	-	-		
33	621	881	1308	-	-	-		
34	618	798	1070	-	-	-		
35	636	920	1138	-	-	-		
36	630	980	1235	-	-	-		
37	631	866	1186	-	-	-		
38	1309	-	-	-	-	-		
39	1316	-	-	-	-	-		
40	1404	-	-	-	-	-		
41	1434	-	-	-	-	-		
42	1277	-	-	-	-	-		
43	1275	1488	-	-	-	-		
44	1441	-	-	-	-	-		
45	1455	-	-	-	-	-		
46	1304	-	-	-	-	-		
47	1212	-	-	-	-	-		

Table 191. Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds.

TOP_20		
	pop. 100	
case #	$1500 { m \ gen.}$	
	avg. time	
28	16.67	
29	16.27	
30	16.12	
31	16.14	
32	16.16	
33	16.67	
34	16.50	
35	16.40	
36	15.96	
37	16.11	
38	29.97	
39	30.09	
40	30.19	
41	30.60	
42	30.58	
43	30.06	
44	30.19	
45	31.09	
46	30.61	
47	30.16	

 ${\bf Table~192.}~{\bf Reached~percentages~of~the~optimizum~of~the~optimizations~of~synthetic~datasets~for~Cases~28-47~in~our~experiments.$

TOP_30					
	fitness value				
	population 100				
case #	1500 generations				
	avg	min	max		
28	89.98%	89.02%	91.05%		
29	86.70%	82.22%	89.91%		
30	85.92%	83.64%	89.62%		
31	84.51%	80.97%	86.25%		
32	87.40%	85.02%	89.69%		
33	87.14%	85.69%	88.75%		
34	86.66%	84.59%	88.78%		
35	88.21%	85.43%	91.47%		
36	86.08%	82.63%	90.69%		
37	85.93%	84.33%	87.41%		
38	74.33%	70.57%	78.66%		
39	72.28%	70.29%	74.65%		
40	76.34%	74.79%	80.18%		
41	74.54%	72.88%	76.84%		
42	74.88%	73.87%	76.34%		
43	75.78%	72.65%	80.84%		
44	74.62%	70.86%	76.54%		
45	77.04%	75.63%	79.44%		
46	74.98%	71.65%	80.74%		
47	77.29%	75.01%	79.79%		

Table 193. Number of generations needed to reach 75%, 80%, 85%, 90%, 95%, 100% by the optimizations of synthetic datasets for Cases 28-47 in our experiments.

	TOP_30					
population 100						
$ _{\mathrm{case}\;\#}$	1500 generations					
		80%	85%	90%	95%	100%
28	486	619	951	1426	-	-
29	637	864	1189	-	-	-
30	623	829	1105	-	-	-
31	746	1061	1401	-	-	-
32	670	929	1281	-	-	-
33	660	881	1245	-	-	-
34	582	912	1326	-	-	-
35	629	813	1185	1339	-	-
36	606	892	1150	1362	-	-
37	695	996	1408	-	-	-
38	1377	-	-	-	-	-
39	-	-	-	-	-	-
40	1358	1400	-	-	-	-
41	1317	-	-	-	-	-
42	1329	-	-	-	-	-
43	1317	1305	-	-	-	-
44	1440	-	-	-	-	-
45	1291	-	-	-	-	-
46	1107	1399	-	-	-	-
47	1274	-	-	-	-	-

 $\textbf{Table 194.} \ \text{Average time of the optimizations of synthetic datasets for Cases 28-47 in our experiments. The average time is displayed as seconds. } \\$

TOP_30		
	pop. 100	
case #	1500 gen.	
	avg. time	
28	16.01	
29	16.17	
30	16.08	
31	16.10	
32	16.20	
33	16.10	
34	16.11	
35	16.71	
36	16.49	
37	16.20	
38	30.35	
39	30.18	
40	30.59	
41	30.17	
42	30.15	
43	30.21	
44	30.26	
45	30.27	
46	31.05	
47	30.82	

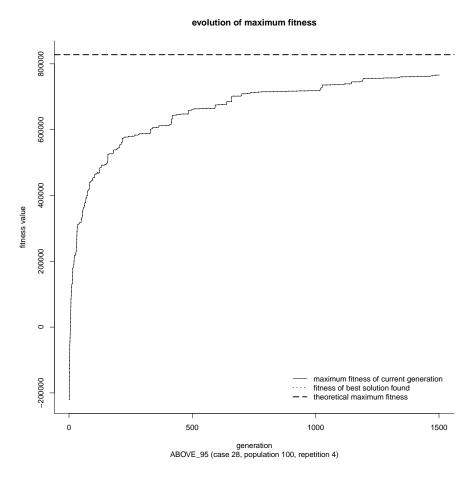


Fig. 107. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

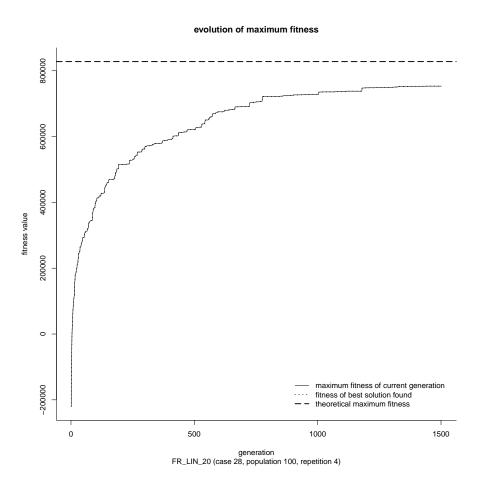


Fig. 108. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

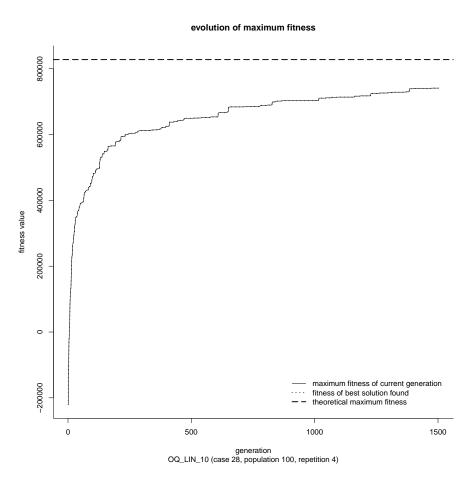


Fig. 109. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

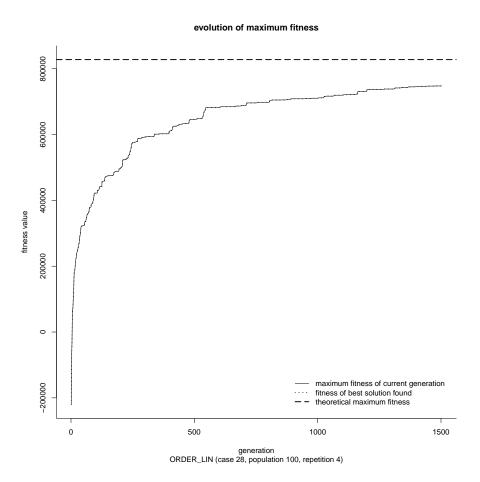


Fig. 110. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

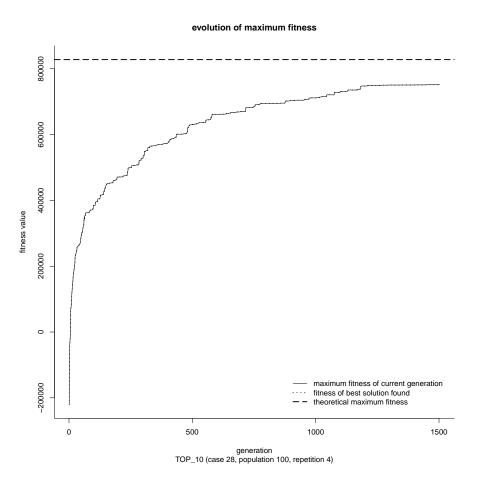


Fig. 111. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

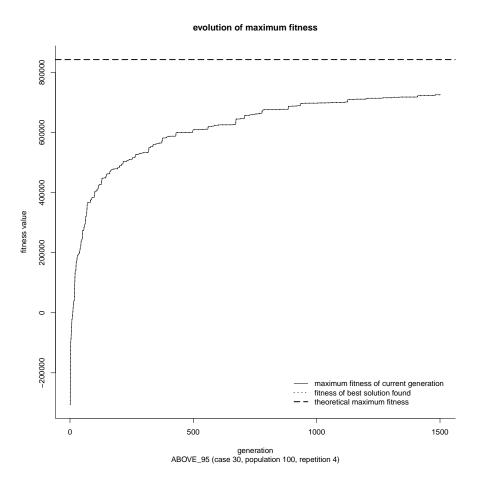


Fig. 112. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

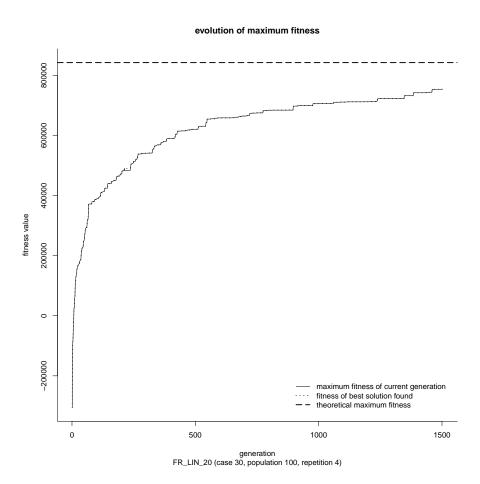


Fig. 113. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

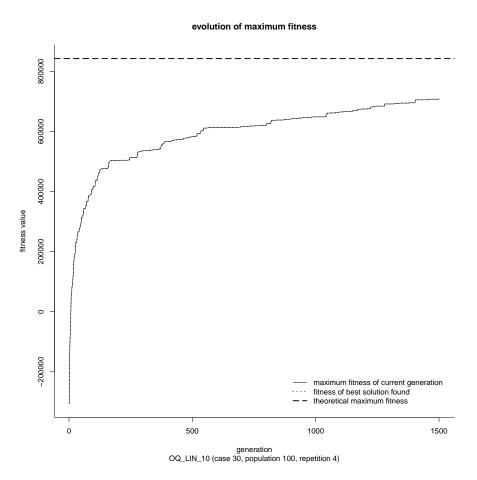


Fig. 114. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

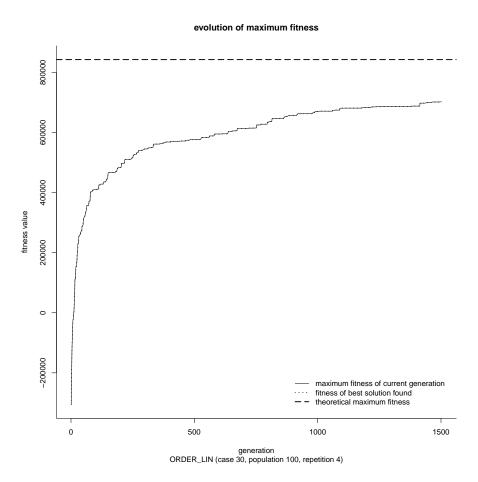


Fig. 115. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

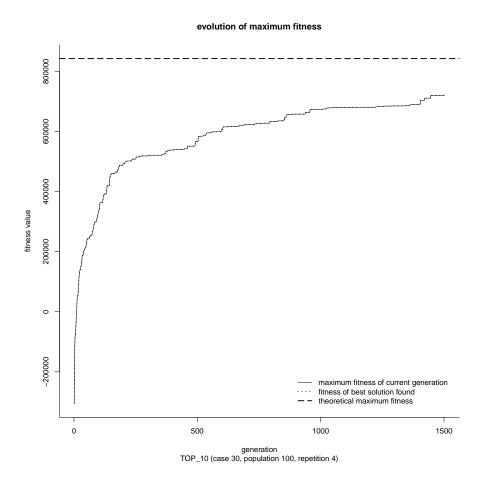


Fig. 116. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

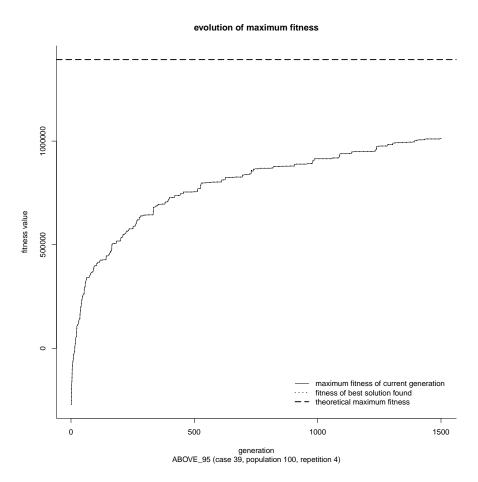


Fig. 117. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

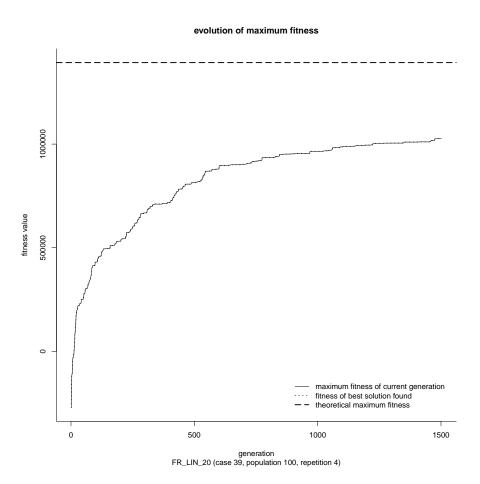


Fig. 118. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

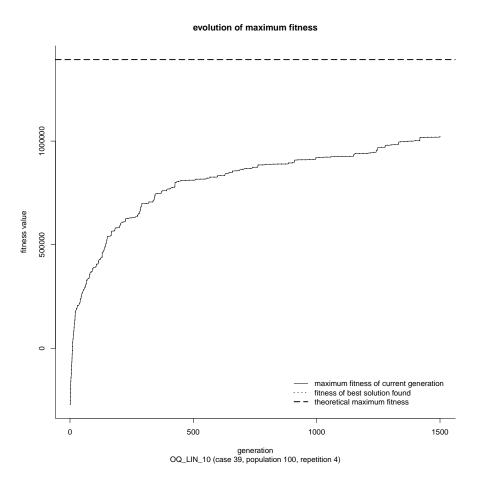


Fig. 119. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

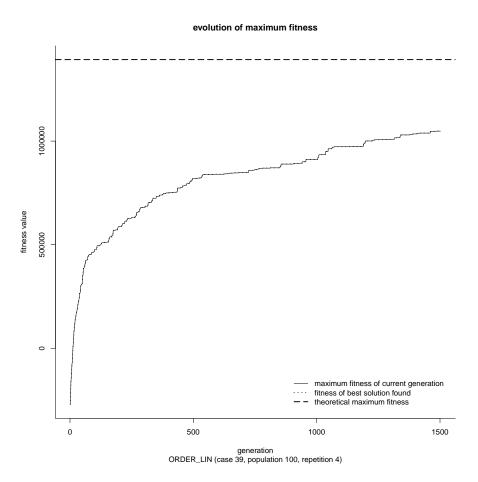


Fig. 120. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.

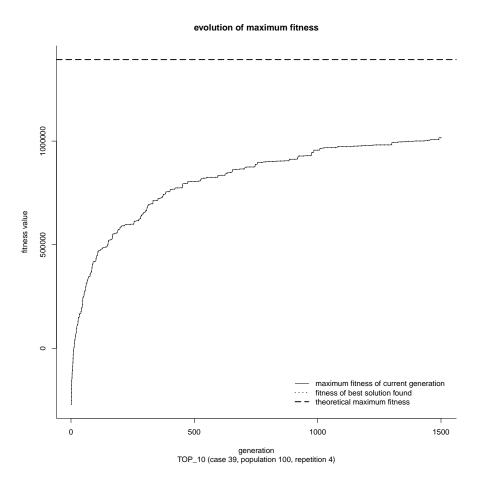


Fig. 121. Evolution of the fitness of the current generation, of the fitness of the best solution found and of the theoretical maximum fitness of an optimization in our experiments.